Documentation

LeanAPAP.Prereqs.DummyPositivity

A bunch of dummy lemmas to be used in broken positivity extensions #

The lack of pattern-matching in Qq means that we currently cannot write sound positivity extensions that work on non-generic nor concrete types (eg α → β). So for the time being we replace them by unsound ones using the following dummy lemmas.

We want to avoid

theorem Mathlib.Meta.Positivity.dummy_pos {α : Type u_1} [Zero α] [PartialOrder α] {a : α} :
0 < a
theorem Mathlib.Meta.Positivity.dummy_nng {α : Type u_1} [Zero α] [PartialOrder α] {a : α} :
0 a
theorem Mathlib.Meta.Positivity.dummy_nzr {α : Type u_1} [Zero α] [PartialOrder α] {a : α} :
a 0
theorem Mathlib.Meta.Positivity.dummy_pos_of_pos {α : Type u_1} [Zero α] [PartialOrder α] {a b : α} (ha : 0 < a) :
0 < b
theorem Mathlib.Meta.Positivity.dummy_pos_of_nzr {α : Type u_1} [Zero α] [PartialOrder α] {a b : α} (ha : a 0) :
0 < b
theorem Mathlib.Meta.Positivity.dummy_nng_of_nng {α : Type u_1} [Zero α] [PartialOrder α] {a b : α} (ha : 0 a) :
0 b
theorem Mathlib.Meta.Positivity.dummy_nzr_of_nzr {α : Type u_1} [Zero α] [PartialOrder α] {a b : α} (ha : a 0) :
b 0
theorem Mathlib.Meta.Positivity.dummy_pos_of_pos_pos {α : Type u_1} [Zero α] [PartialOrder α] {a b c : α} (ha : 0 < a) (hb : 0 < b) :
0 < c
theorem Mathlib.Meta.Positivity.dummy_nng_of_pos_nng {α : Type u_1} [Zero α] [PartialOrder α] {a b c : α} (ha : 0 < a) (hb : 0 b) :
0 c
theorem Mathlib.Meta.Positivity.dummy_nng_of_nng_pos {α : Type u_1} [Zero α] [PartialOrder α] {a b c : α} (ha : 0 a) (hb : 0 < b) :
0 c
theorem Mathlib.Meta.Positivity.dummy_nng_of_nng_nng {α : Type u_1} [Zero α] [PartialOrder α] {a b c : α} (ha : 0 a) (hb : 0 b) :
0 c
theorem Mathlib.Meta.Positivity.dummy_nzr_of_pos_nzr {α : Type u_1} [Zero α] [PartialOrder α] {a b c : α} (ha : 0 < a) (hb : b 0) :
c 0
theorem Mathlib.Meta.Positivity.dummy_nzr_of_nzr_pos {α : Type u_1} [Zero α] [PartialOrder α] {a b c : α} (ha : a 0) (hb : 0 < b) :
c 0
theorem Mathlib.Meta.Positivity.dummy_nzr_of_nzr_nzr {α : Type u_1} [Zero α] [PartialOrder α] {a b c : α} (ha : a 0) (hb : b 0) :
c 0