Documentation

LeanAPAP.Prereqs.Function.Indicator.Basic

Indicator #

theorem translate_indicate {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] [AddCommGroup α] (a : α) (s : Finset α) :
τ a (𝟭 s) = 𝟭 (a +ᵥ s)
@[simp]
theorem conjneg_indicate {α : Type u_2} {β : Type u_3} [DecidableEq α] [CommSemiring β] [StarRing β] [AddCommGroup α] (s : Finset α) :
theorem expect_indicate {ι : Type u_1} {β : Type u_3} [Fintype ι] [DecidableEq ι] [Semiring β] [Module ℚ≥0 β] (s : Finset ι) :
(Finset.univ.expect fun (x : ι) => 𝟭 s x) = (↑(Fintype.card ι))⁻¹ s.card

Normalised indicator #

theorem translate_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] [AddCommGroup α] (a : α) (s : Finset α) :
τ a (μ s) = μ (a +ᵥ s)
theorem expect_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semifield β] {s : Finset α} [CharZero β] [Fintype α] (hs : s.Nonempty) :
(Finset.univ.expect fun (x : α) => μ s x) = (↑(Fintype.card α))⁻¹
@[simp]
theorem conjneg_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semifield β] [StarRing β] [AddCommGroup α] (s : Finset α) :
conjneg (μ s) = μ (-s)