Documentation

LeanAPAP.Prereqs.Function.Translate

Precomposition operators #

Translation operator #

def translate {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (f : αβ) :
αβ
Equations
  • τ a f x = f (x - a)
Instances For
    @[simp]
    theorem translate_apply {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (f : αβ) (x : α) :
    τ a f x = f (x - a)
    @[simp]
    theorem translate_zero {α : Type u_2} {β : Type u_3} [AddCommGroup α] (f : αβ) :
    τ 0 f = f
    theorem translate_translate {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (b : α) (f : αβ) :
    τ a (τ b f) = τ (a + b) f
    theorem translate_add {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (b : α) (f : αβ) :
    τ (a + b) f = τ a (τ b f)
    theorem translate_add' {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (b : α) (f : αβ) :
    τ (a + b) f = τ b (τ a f)
    theorem translate_comm {α : Type u_2} {β : Type u_3} [AddCommGroup α] (a : α) (b : α) (f : αβ) :
    τ a (τ b f) = τ b (τ a f)
    @[simp]
    theorem comp_translate {α : Type u_2} {β : Type u_3} {γ : Type u_4} [AddCommGroup α] (a : α) (f : αβ) (g : βγ) :
    g τ a f = τ a (g f)
    @[simp]
    theorem translate_smul_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [AddCommGroup α] [SMul γ β] (a : α) (f : αβ) (c : γ) :
    τ a (c f) = c τ a f
    @[simp]
    theorem translate_zero_right {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommMonoid β] (a : α) :
    τ a 0 = 0
    theorem translate_add_right {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommMonoid β] (a : α) (f : αβ) (g : αβ) :
    τ a (f + g) = τ a f + τ a g
    theorem translate_sum_right {ι : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommMonoid β] (a : α) (f : ιαβ) (s : Finset ι) :
    τ a (∑ is, f i) = is, τ a (f i)
    theorem sum_translate {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommMonoid β] [Fintype α] (a : α) (f : αβ) :
    b : α, τ a f b = b : α, f b
    theorem translate_sub_right {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) (f : αβ) (g : αβ) :
    τ a (f - g) = τ a f - τ a g
    theorem translate_neg_right {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) (f : αβ) :
    τ a (-f) = -τ a f
    @[simp]
    theorem support_translate {α : Type u_2} {β : Type u_3} [AddCommGroup α] [AddCommGroup β] (a : α) (f : αβ) :
    theorem translate_prod_right {ι : Type u_1} {α : Type u_2} {β : Type u_3} [AddCommGroup α] [CommRing β] (a : α) (f : ιαβ) (s : Finset ι) :
    τ a (∏ is, f i) = is, τ a (f i)
    noncomputable def dilate {G : Type u_3} {𝕜 : Type u_4} [AddCommGroup G] (f : G𝕜) (n : ) :
    G𝕜
    Equations
    Instances For
      theorem IsSelfAdjoint.dilate {G : Type u_3} {𝕜 : Type u_4} [AddCommGroup G] [Star 𝕜] {f : G𝕜} (hf : IsSelfAdjoint f) (n : ) :