Documentation

LeanAPAP.Prereqs.Indicator

Indicator #

def indicate {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] (s : Finset α) (a : α) :
β
Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem indicate_apply {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] {s : Finset α} (x : α) :
      𝟭 s x = if x s then 1 else 0
      @[simp]
      theorem indicate_empty {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] :
      @[simp]
      theorem indicate_univ {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] [Fintype α] :
      𝟭 Finset.univ = 1
      theorem indicate_inter_apply {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] (s : Finset α) (t : Finset α) (x : α) :
      𝟭 (s t) x = 𝟭 s x * 𝟭 t x
      theorem indicate_inter {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] (s : Finset α) (t : Finset α) :
      𝟭 (s t) = 𝟭 s * 𝟭 t
      theorem map_indicate {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq α] [Semiring β] [Semiring γ] (f : β →+* γ) (s : Finset α) (x : α) :
      f (𝟭 s x) = 𝟭 s x
      @[simp]
      theorem indicate_image {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] {α' : Type u_5} [DecidableEq α'] (e : α α') (s : Finset α) (a : α') :
      𝟭 (Finset.image (e) s) a = 𝟭 s (e.symm a)
      @[simp]
      theorem indicate_eq_zero {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] {s : Finset α} [Nontrivial β] {a : α} :
      𝟭 s a = 0 as
      theorem indicate_ne_zero {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] {s : Finset α} [Nontrivial β] {a : α} :
      𝟭 s a 0 a s
      @[simp]
      theorem support_indicate {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] {s : Finset α} [Nontrivial β] :
      theorem sum_indicate {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] [Fintype α] (s : Finset α) :
      (Finset.univ.sum fun (x : α) => 𝟭 s x) = s.card
      theorem card_eq_sum_indicate {α : Type u_2} [DecidableEq α] [Fintype α] (s : Finset α) :
      s.card = Finset.univ.sum fun (x : α) => 𝟭 s x
      theorem translate_indicate {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] [AddCommGroup α] (a : α) (s : Finset α) :
      τ a (𝟭 s) = 𝟭 (a +ᵥ s)
      @[simp]
      theorem indicate_vadd {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] {G : Type u_5} [AddGroup G] [AddAction G α] (g : G) (s : Finset α) (a : α) :
      𝟭 (g +ᵥ s) a = 𝟭 s (-g +ᵥ a)
      @[simp]
      theorem indicate_smul {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] {G : Type u_5} [Group G] [MulAction G α] (g : G) (s : Finset α) (a : α) :
      𝟭 (g s) a = 𝟭 s (g⁻¹ a)
      @[simp]
      theorem indicate_neg {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] [AddGroup α] (s : Finset α) (a : α) :
      𝟭 (-s) a = 𝟭 s (-a)
      @[simp]
      theorem indicate_inv {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semiring β] [Group α] (s : Finset α) (a : α) :
      theorem indicate_isSelfAdjoint {α : Type u_2} {β : Type u_3} [DecidableEq α] [Semiring β] [StarRing β] (s : Finset α) :
      theorem indicate_inf_apply {ι : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [CommSemiring β] [Fintype α] (s : Finset ι) (t : ιFinset α) (x : α) :
      𝟭 (s.inf t) x = s.prod fun (i : ι) => 𝟭 (t i) x
      theorem indicate_inf {ι : Type u_1} {α : Type u_2} {β : Type u_3} [DecidableEq α] [CommSemiring β] [Fintype α] (s : Finset ι) (t : ιFinset α) :
      𝟭 (s.inf t) = s.prod fun (i : ι) => 𝟭 (t i)
      @[simp]
      theorem conj_indicate_apply {α : Type u_2} {β : Type u_3} [DecidableEq α] [CommSemiring β] [StarRing β] [AddCommGroup α] (s : Finset α) (a : α) :
      (starRingEnd β) (𝟭 s a) = 𝟭 s a
      @[simp]
      theorem conj_indicate {α : Type u_2} {β : Type u_3} [DecidableEq α] [CommSemiring β] [StarRing β] [AddCommGroup α] (s : Finset α) :
      (starRingEnd (αβ)) (𝟭 s) = 𝟭 s
      @[simp]
      theorem conjneg_indicate {α : Type u_2} {β : Type u_3} [DecidableEq α] [CommSemiring β] [StarRing β] [AddCommGroup α] (s : Finset α) :
      theorem expect_indicate {ι : Type u_1} {β : Type u_3} [Fintype ι] [DecidableEq ι] [Semiring β] [Module ℚ≥0 β] (s : Finset ι) :
      (Finset.univ.expect fun (x : ι) => 𝟭 s x) = ((Fintype.card ι))⁻¹ s.card
      @[simp]
      theorem NNReal.coe_indicate {α : Type u_2} [DecidableEq α] (s : Finset α) (x : α) :
      (𝟭 s x) = 𝟭 s x
      @[simp]
      @[simp]
      theorem Complex.ofReal_indicate {α : Type u_2} [DecidableEq α] (s : Finset α) (x : α) :
      (𝟭 s x) = 𝟭 s x
      @[simp]
      theorem indicate_nonneg {α : Type u_2} {β : Type u_3} [DecidableEq α] [OrderedSemiring β] {s : Finset α} :
      0 𝟭 s
      @[simp]
      theorem indicate_pos {α : Type u_2} {β : Type u_3} [DecidableEq α] [OrderedSemiring β] {s : Finset α} [Nontrivial β] :
      0 < 𝟭 s s.Nonempty
      theorem Finset.Nonempty.indicate_pos {α : Type u_2} {β : Type u_3} [DecidableEq α] [OrderedSemiring β] {s : Finset α} [Nontrivial β] :
      s.Nonempty0 < 𝟭 s

      Alias of the reverse direction of indicate_pos.

      Normalised indicator #

      def mu {α : Type u_2} {β : Type u_3} [DecidableEq α] [DivisionSemiring β] (s : Finset α) :
      αβ

      The normalised indicate of a set.

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem mu_apply {α : Type u_2} {β : Type u_3} [DecidableEq α] [DivisionSemiring β] {s : Finset α} (x : α) :
          μ s x = (s.card)⁻¹ * if x s then 1 else 0
          @[simp]
          theorem mu_empty {α : Type u_2} {β : Type u_3} [DecidableEq α] [DivisionSemiring β] :
          μ = 0
          theorem map_mu {α : Type u_2} {β : Type u_3} {γ : Type u_4} [DecidableEq α] [DivisionSemiring β] [DivisionSemiring γ] (f : β →+* γ) (s : Finset α) (x : α) :
          f (μ s x) = μ s x
          @[simp]
          theorem mu_apply_eq_zero {α : Type u_2} {β : Type u_3} [DecidableEq α] [DivisionSemiring β] {s : Finset α} [CharZero β] {a : α} :
          μ s a = 0 as
          theorem mu_apply_ne_zero {α : Type u_2} {β : Type u_3} [DecidableEq α] [DivisionSemiring β] {s : Finset α} [CharZero β] {a : α} :
          μ s a 0 a s
          @[simp]
          theorem mu_eq_zero {α : Type u_2} {β : Type u_3} [DecidableEq α] [DivisionSemiring β] {s : Finset α} [CharZero β] :
          μ s = 0 s =
          theorem mu_ne_zero {α : Type u_2} {β : Type u_3} [DecidableEq α] [DivisionSemiring β] {s : Finset α} [CharZero β] :
          μ s 0 s.Nonempty
          @[simp]
          theorem support_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] [CharZero β] (s : Finset α) :
          theorem card_smul_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] [CharZero β] (s : Finset α) :
          s.card μ s = 𝟭 s
          theorem card_smul_mu_apply {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] [CharZero β] (s : Finset α) (x : α) :
          s.card μ s x = 𝟭 s x
          theorem sum_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] {s : Finset α} [CharZero β] [Fintype α] (hs : s.Nonempty) :
          (Finset.univ.sum fun (x : α) => μ s x) = 1
          theorem translate_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] [AddCommGroup α] (a : α) (s : Finset α) :
          τ a (μ s) = μ (a +ᵥ s)
          @[simp]
          theorem mu_vadd {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] {G : Type u_5} [AddGroup G] [AddAction G α] (g : G) (s : Finset α) (a : α) :
          μ (g +ᵥ s) a = μ s (-g +ᵥ a)
          @[simp]
          theorem mu_smul {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] {G : Type u_5} [Group G] [MulAction G α] (g : G) (s : Finset α) (a : α) :
          μ (g s) a = μ s (g⁻¹ a)
          @[simp]
          theorem mu_neg {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] [AddGroup α] (s : Finset α) (a : α) :
          μ (-s) a = μ s (-a)
          @[simp]
          theorem mu_inv {α : Type u_2} (β : Type u_3) [DecidableEq α] [DivisionSemiring β] [Group α] (s : Finset α) (a : α) :
          μ s⁻¹ a = μ s a⁻¹
          theorem expect_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semifield β] {s : Finset α} [CharZero β] [Fintype α] (hs : s.Nonempty) :
          (Finset.univ.expect fun (x : α) => μ s x) = ((Fintype.card α))⁻¹
          @[simp]
          theorem conj_mu_apply {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semifield β] [StarRing β] [AddCommGroup α] (s : Finset α) (a : α) :
          (starRingEnd β) (μ s a) = μ s a
          @[simp]
          theorem conj_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semifield β] [StarRing β] [AddCommGroup α] (s : Finset α) :
          (starRingEnd (αβ)) (μ s) = μ s
          @[simp]
          theorem conjneg_mu {α : Type u_2} (β : Type u_3) [DecidableEq α] [Semifield β] [StarRing β] [AddCommGroup α] (s : Finset α) :
          conjneg (μ s) = μ (-s)
          @[simp]
          theorem RCLike.coe_mu {α : Type u_2} [DecidableEq α] {𝕜 : Type u_5} [RCLike 𝕜] (s : Finset α) (a : α) :
          (μ s a) = μ s a
          @[simp]
          theorem RCLike.coe_comp_mu {α : Type u_2} [DecidableEq α] {𝕜 : Type u_5} [RCLike 𝕜] (s : Finset α) :
          RCLike.ofReal μ s = μ s
          @[simp]
          theorem NNReal.coe_mu {α : Type u_2} [DecidableEq α] (s : Finset α) (x : α) :
          (μ s x) = μ s x
          @[simp]
          theorem NNReal.coe_comp_mu {α : Type u_2} [DecidableEq α] (s : Finset α) :
          @[simp]
          theorem mu_nonneg {α : Type u_2} {β : Type u_3} [DecidableEq α] [LinearOrderedSemifield β] {s : Finset α} :
          0 μ s
          @[simp]
          theorem mu_pos {α : Type u_2} {β : Type u_3} [DecidableEq α] [LinearOrderedSemifield β] {s : Finset α} :
          0 < μ s s.Nonempty
          theorem Finset.Nonempty.mu_pos {α : Type u_2} {β : Type u_3} [DecidableEq α] [LinearOrderedSemifield β] {s : Finset α} :
          s.Nonempty0 < μ s

          Alias of the reverse direction of mu_pos.