Facts about algebraMap
when the coefficient ring is a field. #
@[simp]
theorem
algebraMap.coe_inj
{R : Type u_1}
{A : Type u_2}
[Field R]
[CommSemiring A]
[Nontrivial A]
[Algebra R A]
{a b : R}
:
theorem
algebraMap.lift_map_eq_zero_iff
{R : Type u_1}
{A : Type u_2}
[Field R]
[CommSemiring A]
[Nontrivial A]
[Algebra R A]
(a : R)
:
theorem
algebraMap.coe_inv
{R : Type u_1}
(A : Type u_2)
[Semifield R]
[DivisionSemiring A]
[Algebra R A]
(r : R)
:
theorem
algebraMap.coe_div
{R : Type u_1}
(A : Type u_2)
[Semifield R]
[DivisionSemiring A]
[Algebra R A]
(r s : R)
:
theorem
algebraMap.coe_ratCast
(R : Type u_1)
(A : Type u_2)
[Field R]
[DivisionRing A]
[Algebra R A]
(q : ℚ)
:
↑↑q = ↑q