Faithful group actions #
This file provides typeclasses for faithful actions.
Notation #
Implementation details #
This file should avoid depending on other parts of GroupTheory
, to avoid import cycles.
More sophisticated lemmas belong in GroupTheory.GroupAction
.
Tags #
group action
Faithful actions #
Typeclass for faithful actions.
Two elements
g₁
andg₂
are equal whenever they act in the same way on all points.
Typeclass for faithful actions.
Two elements
m₁
andm₂
are equal whenever they act in the same way on all points.
Instances
- AddAut.apply_faithfulSMul
- AddMonoid.End.applyFaithfulSMul
- AddMonoidAlgebra.faithfulSMul
- AlgEquiv.apply_faithfulSMul
- CancelMonoidWithZero.toFaithfulSMul_opposite
- ContinuousLinearMap.applyFaithfulSMul
- DomMulAct.instFaithfulSMulForallOfNontrivial
- Equiv.Perm.applyFaithfulSMul
- Finsupp.faithfulSMul
- Finsupp.instFaithfulSMulOfNonempty
- Function.End.apply_FaithfulSMul
- LefttCancelMonoid.to_faithfulSMul_mulOpposite
- LinearEquiv.apply_faithfulSMul
- LinearMap.apply_faithfulSMul
- Module.Free.instFaithfulSMulOfNontrivial
- MonoidAlgebra.faithfulSMul
- MulAut.apply_faithfulSMul
- MvPolynomial.faithfulSMul
- NoZeroSMulDivisors.instFaithfulSMulOfNontrivial
- Pi.faithfulSMul
- Polynomial.faithfulSMul
- Prod.faithfulSMulLeft
- Prod.faithfulSMulRight
- RightCancelMonoid.faithfulSMul
- RingHom.applyFaithfulSMul
- Subalgebra.instFaithfulSMulSubtypeMem
- Subfield.instFaithfulSMulSubtypeMem
- Subgroup.instFaithfulSMulSubtypeMem
- Submonoid.faithfulSMul
- Subring.instFaithfulSMulSubtypeMem
- Subsemiring.faithfulSMul
- Subsemiring.instFaithfulSMulSubtypeMem
- Units.instFaithfulSMul
- instFaithfulSMul
- instFaithfulSMulIntOfCharZero
- instFaithfulSMulNatOfCharZero
theorem
smul_left_injective'
{M : Type u_1}
{α : Type u_3}
[SMul M α]
[FaithfulSMul M α]
:
Function.Injective fun (x1 : M) (x2 : α) => x1 • x2
theorem
vadd_left_injective'
{M : Type u_1}
{α : Type u_3}
[VAdd M α]
[FaithfulVAdd M α]
:
Function.Injective fun (x1 : M) (x2 : α) => x1 +ᵥ x2
Monoid.toMulAction
is faithful on cancellative monoids.
instance
AddRightCancelMonoid.faithfulVAdd
{α : Type u_3}
[AddRightCancelMonoid α]
:
FaithfulVAdd α α
AddMonoid.toAddAction
is faithful on additive cancellative monoids.
instance
LefttCancelMonoid.to_faithfulSMul_mulOpposite
{α : Type u_3}
[LeftCancelMonoid α]
:
FaithfulSMul αᵐᵒᵖ α
Monoid.toOppositeMulAction
is faithful on cancellative monoids.
instance
LefttCancelMonoid.to_faithfulVAdd_addOpposite
{α : Type u_3}
[AddLeftCancelMonoid α]
:
FaithfulVAdd αᵃᵒᵖ α
AddMonoid.toOppositeAddAction
is faithful on additive cancellative monoids.