Documentation

Mathlib.Algebra.Order.Floor

Floor and ceil #

Summary #

We define the natural- and integer-valued floor and ceil functions on linearly ordered rings.

Main Definitions #

Notations #

The index in the notations for Nat.floor and Nat.ceil is used in analogy to the notation for nnnorm.

TODO #

LinearOrderedRing/LinearOrderedSemiring can be relaxed to OrderedRing/OrderedSemiring in many lemmas.

Tags #

rounding, floor, ceil

Floor semiring #

class FloorSemiring (α : Type u_4) [OrderedSemiring α] :
Type u_4

A FloorSemiring is an ordered semiring over α with a function floor : α → ℕ satisfying ∀ (n : ℕ) (x : α), n ≤ ⌊x⌋ ↔ (n : α) ≤ x). Note that many lemmas require a LinearOrder. Please see the above TODO.

Instances
def Nat.floor {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] :
α

⌊a⌋₊ is the greatest natural n such that n ≤ a. If a is negative, then ⌊a⌋₊ = 0.

Equations
def Nat.ceil {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] :
α

⌈a⌉₊ is the least natural n such that a ≤ n

Equations
@[simp]
@[simp]

⌊a⌋₊ is the greatest natural n such that n ≤ a. If a is negative, then ⌊a⌋₊ = 0.

Equations
  • One or more equations did not get rendered due to their size.

⌈a⌉₊ is the least natural n such that a ≤ n

Equations
  • One or more equations did not get rendered due to their size.
theorem Nat.le_floor_iff {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] {a : α} {n : } (ha : 0 a) :
n a⌋₊ n a
theorem Nat.le_floor {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] {a : α} {n : } (h : n a) :
@[simp]
theorem Nat.ceil_le {α : Type u_2} [OrderedSemiring α] [FloorSemiring α] {a : α} {n : } :
a⌉₊ n a n
theorem Nat.floor_lt {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (ha : 0 a) :
a⌋₊ < n a < n
theorem Nat.floor_lt_one {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (ha : 0 a) :
a⌋₊ < 1 a < 1
theorem Nat.lt_of_floor_lt {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (h : a⌋₊ < n) :
a < n
theorem Nat.lt_one_of_floor_lt_one {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (h : a⌋₊ < 1) :
a < 1
theorem Nat.floor_le {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (ha : 0 a) :
theorem Nat.lt_succ_floor {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] (a : α) :
theorem Nat.lt_floor_add_one {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] (a : α) :
a < a⌋₊ + 1
@[simp]
theorem Nat.floor_natCast {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] (n : ) :
n⌋₊ = n
@[simp]
@[simp]
theorem Nat.floor_of_nonpos {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (ha : a 0) :
theorem Nat.floor_le_floor {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a b : α} (hab : a b) :
theorem Nat.le_floor_iff' {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (hn : n 0) :
n a⌋₊ n a
@[simp]
theorem Nat.one_le_floor_iff {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] (x : α) :
theorem Nat.floor_lt' {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (hn : n 0) :
a⌋₊ < n a < n
theorem Nat.floor_pos {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} :
theorem Nat.pos_of_floor_pos {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (h : 0 < a⌋₊) :
0 < a
theorem Nat.lt_of_lt_floor {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (h : n < a⌋₊) :
n < a
theorem Nat.floor_le_of_le {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (h : a n) :
theorem Nat.floor_le_one_of_le_one {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (h : a 1) :
@[simp]
theorem Nat.floor_eq_zero {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} :
a⌋₊ = 0 a < 1
theorem Nat.floor_eq_iff {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (ha : 0 a) :
a⌋₊ = n n a a < n + 1
theorem Nat.floor_eq_iff' {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (hn : n 0) :
a⌋₊ = n n a a < n + 1
theorem Nat.floor_eq_on_Ico {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] (n : ) (a : α) :
a Set.Ico (↑n) (n + 1)a⌋₊ = n
theorem Nat.floor_eq_on_Ico' {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] (n : ) (a : α) :
a Set.Ico (↑n) (n + 1)a⌋₊ = n
theorem Nat.preimage_floor_of_ne_zero {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {n : } (hn : n 0) :
floor ⁻¹' {n} = Set.Ico (↑n) (n + 1)

Ceil #

theorem Nat.lt_ceil {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } :
n < a⌉₊ n < a
theorem Nat.add_one_le_ceil_iff {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } :
n + 1 a⌉₊ n < a
@[simp]
theorem Nat.one_le_ceil_iff {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} :
theorem Nat.le_ceil {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] (a : α) :
@[simp]
theorem Nat.ceil_intCast {α : Type u_4} [LinearOrderedRing α] [FloorSemiring α] (z : ) :
@[simp]
theorem Nat.ceil_natCast {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] (n : ) :
n⌉₊ = n
theorem Nat.ceil_le_ceil {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a b : α} (hab : a b) :
@[simp]
@[simp]
@[simp]
theorem Nat.ceil_eq_zero {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} :
@[simp]
theorem Nat.ceil_pos {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} :
0 < a⌉₊ 0 < a
theorem Nat.lt_of_ceil_lt {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (h : a⌉₊ < n) :
a < n
theorem Nat.le_of_ceil_le {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (h : a⌉₊ n) :
a n
theorem Nat.floor_lt_ceil_of_lt_of_pos {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a b : α} (h : a < b) (h' : 0 < b) :
theorem Nat.ceil_eq_iff {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} {n : } (hn : n 0) :
a⌉₊ = n ↑(n - 1) < a a n
theorem Nat.preimage_ceil_of_ne_zero {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {n : } (hn : n 0) :
ceil ⁻¹' {n} = Set.Ioc ↑(n - 1) n

Intervals #

@[simp]
@[simp]
theorem Nat.preimage_Ioc {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a b : α} (ha : 0 a) (hb : 0 b) :
@[simp]
@[simp]
@[simp]
theorem Nat.floor_add_nat {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (ha : 0 a) (n : ) :
theorem Nat.floor_add_one {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (ha : 0 a) :
@[simp]
theorem Nat.floor_sub_nat {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] [Sub α] [OrderedSub α] [ExistsAddOfLE α] (a : α) (n : ) :
@[simp]
theorem Nat.floor_sub_one {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] [Sub α] [OrderedSub α] [ExistsAddOfLE α] (a : α) :
theorem Nat.ceil_add_nat {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (ha : 0 a) (n : ) :
theorem Nat.ceil_add_one {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (ha : 0 a) :
theorem Nat.ceil_lt_add_one {α : Type u_2} [LinearOrderedSemiring α] [FloorSemiring α] {a : α} (ha : 0 a) :
a⌉₊ < a + 1
theorem Nat.sub_one_lt_floor {α : Type u_2} [LinearOrderedRing α] [FloorSemiring α] (a : α) :
a - 1 < a⌋₊
theorem Nat.floor_div_nat {α : Type u_2} [LinearOrderedSemifield α] [FloorSemiring α] (a : α) (n : ) :
theorem Nat.floor_div_eq_div {α : Type u_2} [LinearOrderedSemifield α] [FloorSemiring α] (m n : ) :
m / n⌋₊ = m / n

Natural division is the floor of field division.

theorem Nat.mul_lt_floor {α : Type u_2} [LinearOrderedField α] [FloorSemiring α] {a b : α} (hb₀ : 0 < b) (hb : b < 1) (hba : b / (1 - b)⌉₊ a) :
b * a < a⌋₊
theorem Nat.ceil_lt_mul {α : Type u_2} [LinearOrderedField α] [FloorSemiring α] {a b : α} (hb : 1 < b) (hba : (b - 1)⁻¹⌉₊ / b < a) :
a⌉₊ < b * a
theorem Nat.ceil_le_mul {α : Type u_2} [LinearOrderedField α] [FloorSemiring α] {a b : α} (hb : 1 < b) (hba : (b - 1)⁻¹⌉₊ / b a) :
a⌉₊ b * a
theorem Nat.div_two_lt_floor {α : Type u_2} [LinearOrderedField α] [FloorSemiring α] {a : α} (ha : 1 a) :
a / 2 < a⌋₊
theorem Nat.ceil_lt_two_mul {α : Type u_2} [LinearOrderedField α] [FloorSemiring α] {a : α} (ha : 2⁻¹ < a) :
a⌉₊ < 2 * a
theorem Nat.ceil_le_two_mul {α : Type u_2} [LinearOrderedField α] [FloorSemiring α] {a : α} (ha : 2⁻¹ a) :
a⌉₊ 2 * a

There exists at most one FloorSemiring structure on a linear ordered semiring.

Floor rings #

class FloorRing (α : Type u_4) [LinearOrderedRing α] :
Type u_4

A FloorRing is a linear ordered ring over α with a function floor : α → ℤ satisfying ∀ (z : ℤ) (a : α), z ≤ floor a ↔ (z : α) ≤ a).

Instances
Equations
def FloorRing.ofFloor (α : Type u_4) [LinearOrderedRing α] (floor : α) (gc_coe_floor : GaloisConnection Int.cast floor) :

A FloorRing constructor from the floor function alone.

Equations
  • FloorRing.ofFloor α floor gc_coe_floor = { floor := floor, ceil := fun (a : α) => -floor (-a), gc_coe_floor := gc_coe_floor, gc_ceil_coe := }
def FloorRing.ofCeil (α : Type u_4) [LinearOrderedRing α] (ceil : α) (gc_ceil_coe : GaloisConnection ceil Int.cast) :

A FloorRing constructor from the ceil function alone.

Equations
  • FloorRing.ofCeil α ceil gc_ceil_coe = { floor := fun (a : α) => -ceil (-a), ceil := ceil, gc_coe_floor := , gc_ceil_coe := gc_ceil_coe }
def Int.floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
α

Int.floor a is the greatest integer z such that z ≤ a. It is denoted with ⌊a⌋.

Equations
def Int.ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
α

Int.ceil a is the smallest integer z such that a ≤ z. It is denoted with ⌈a⌉.

Equations
def Int.fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
α

Int.fract a the fractional part of a, is a minus its floor.

Equations
@[simp]
@[simp]
@[simp]
theorem Int.fract_int :

Int.floor a is the greatest integer z such that z ≤ a. It is denoted with ⌊a⌋.

Equations
  • One or more equations did not get rendered due to their size.

Int.ceil a is the smallest integer z such that a ≤ z. It is denoted with ⌈a⌉.

Equations
  • One or more equations did not get rendered due to their size.

Floor #

theorem Int.le_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
z a z a
theorem Int.floor_lt {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
a < z a < z
theorem Int.floor_le {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a a
theorem Int.floor_le_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
a z a < z + 1
theorem Int.lt_floor_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
z < a z + 1 a
theorem Int.floor_nonneg {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
0 a 0 a
@[simp]
theorem Int.floor_le_sub_one_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
a z - 1 a < z
@[simp]
theorem Int.floor_le_neg_one_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
a -1 a < 0
theorem Int.floor_nonpos {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : a 0) :
theorem Int.lt_succ_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a < a.succ
@[simp]
theorem Int.lt_floor_add_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a < a + 1
@[simp]
theorem Int.sub_one_lt_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a - 1 < a
@[simp]
theorem Int.floor_intCast {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (z : ) :
z = z
@[simp]
theorem Int.floor_natCast {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) :
n = n
@[simp]
theorem Int.floor_zero {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
@[simp]
theorem Int.floor_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
theorem Int.floor_le_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a b : α} (hab : a b) :
theorem Int.floor_pos {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
0 < a 1 a
@[simp]
theorem Int.floor_add_int {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (z : ) :
a + z = a + z
@[simp]
theorem Int.floor_add_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a + 1 = a + 1
theorem Int.le_floor_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a b : α) :
theorem Int.le_floor_add_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a b : α) :
@[simp]
theorem Int.floor_int_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (z : ) (a : α) :
z + a = z + a
@[simp]
theorem Int.floor_add_nat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) :
a + n = a + n
@[simp]
theorem Int.floor_add_ofNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) [n.AtLeastTwo] :
@[simp]
theorem Int.floor_nat_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) (a : α) :
n + a = n + a
@[simp]
theorem Int.floor_ofNat_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) [n.AtLeastTwo] (a : α) :
@[simp]
theorem Int.floor_sub_int {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (z : ) :
a - z = a - z
@[simp]
theorem Int.floor_sub_nat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) :
a - n = a - n
@[simp]
theorem Int.floor_sub_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a - 1 = a - 1
@[simp]
theorem Int.floor_sub_ofNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) [n.AtLeastTwo] :
theorem Int.abs_sub_lt_one_of_floor_eq_floor {α : Type u_4} [LinearOrderedCommRing α] [FloorRing α] {a b : α} (h : a = b) :
|a - b| < 1
theorem Int.floor_eq_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
a = z z a a < z + 1
@[simp]
theorem Int.floor_eq_zero_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
theorem Int.floor_eq_on_Ico {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) (a : α) :
a Set.Ico (↑n) (n + 1)a = n
theorem Int.floor_eq_on_Ico' {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) (a : α) :
a Set.Ico (↑n) (n + 1)a = n
@[simp]
theorem Int.preimage_floor_singleton {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (m : ) :
floor ⁻¹' {m} = Set.Ico (↑m) (m + 1)

Fractional part #

@[simp]
theorem Int.self_sub_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a - a = fract a
@[simp]
theorem Int.floor_add_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a + fract a = a
@[simp]
theorem Int.fract_add_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
fract a + a = a
@[simp]
theorem Int.fract_add_int {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (m : ) :
fract (a + m) = fract a
@[simp]
theorem Int.fract_add_nat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (m : ) :
fract (a + m) = fract a
@[simp]
theorem Int.fract_add_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
fract (a + 1) = fract a
@[simp]
theorem Int.fract_add_ofNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) [n.AtLeastTwo] :
@[simp]
theorem Int.fract_int_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (m : ) (a : α) :
fract (m + a) = fract a
@[simp]
theorem Int.fract_nat_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) (a : α) :
fract (n + a) = fract a
@[simp]
theorem Int.fract_one_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
fract (1 + a) = fract a
@[simp]
theorem Int.fract_ofNat_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) [n.AtLeastTwo] (a : α) :
@[simp]
theorem Int.fract_sub_int {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (m : ) :
fract (a - m) = fract a
@[simp]
theorem Int.fract_sub_nat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) :
fract (a - n) = fract a
@[simp]
theorem Int.fract_sub_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
fract (a - 1) = fract a
@[simp]
theorem Int.fract_sub_ofNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) [n.AtLeastTwo] :
theorem Int.fract_add_le {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a b : α) :
fract (a + b) fract a + fract b
theorem Int.fract_add_fract_le {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a b : α) :
fract a + fract b fract (a + b) + 1
@[simp]
theorem Int.self_sub_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a - fract a = a
@[simp]
theorem Int.fract_sub_self {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
fract a - a = -a
@[simp]
theorem Int.fract_nonneg {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
theorem Int.fract_pos {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
0 < fract a a a

The fractional part of a is positive if and only if a ≠ ⌊a⌋.

theorem Int.fract_lt_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
fract a < 1
@[simp]
theorem Int.fract_zero {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
fract 0 = 0
@[simp]
theorem Int.fract_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
fract 1 = 0
theorem Int.abs_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
@[simp]
theorem Int.abs_one_sub_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
|1 - fract a| = 1 - fract a
@[simp]
theorem Int.fract_intCast {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (z : ) :
fract z = 0
@[simp]
theorem Int.fract_natCast {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) :
fract n = 0
@[simp]
theorem Int.fract_ofNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) [n.AtLeastTwo] :
theorem Int.fract_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
fract a = 0
@[simp]
theorem Int.floor_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
theorem Int.fract_eq_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a b : α} :
fract a = b 0 b b < 1 ∃ (z : ), a - b = z
theorem Int.fract_eq_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a b : α} :
fract a = fract b ∃ (z : ), a - b = z
@[simp]
theorem Int.fract_eq_self {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
fract a = a 0 a a < 1
@[simp]
theorem Int.fract_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
theorem Int.fract_add {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a b : α) :
∃ (z : ), fract (a + b) - fract a - fract b = z
theorem Int.fract_neg {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {x : α} (hx : fract x 0) :
fract (-x) = 1 - fract x
@[simp]
theorem Int.fract_neg_eq_zero {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {x : α} :
fract (-x) = 0 fract x = 0
theorem Int.fract_mul_nat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (b : ) :
∃ (z : ), fract a * b - fract (a * b) = z
theorem Int.preimage_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (s : Set α) :
fract ⁻¹' s = ⋃ (m : ), (fun (x : α) => x - m) ⁻¹' (s Set.Ico 0 1)
theorem Int.image_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (s : Set α) :
fract '' s = ⋃ (m : ), (fun (x : α) => x - m) '' s Set.Ico 0 1
theorem Int.fract_div_mul_self_mem_Ico {k : Type u_4} [LinearOrderedField k] [FloorRing k] (a b : k) (ha : 0 < a) :
fract (b / a) * a Set.Ico 0 a
theorem Int.fract_div_mul_self_add_zsmul_eq {k : Type u_4} [LinearOrderedField k] [FloorRing k] (a b : k) (ha : a 0) :
fract (b / a) * a + b / a a = b
theorem Int.sub_floor_div_mul_nonneg {k : Type u_4} [LinearOrderedField k] [FloorRing k] {b : k} (a : k) (hb : 0 < b) :
0 a - a / b * b
theorem Int.sub_floor_div_mul_lt {k : Type u_4} [LinearOrderedField k] [FloorRing k] {b : k} (a : k) (hb : 0 < b) :
a - a / b * b < b
theorem Int.fract_div_natCast_eq_div_natCast_mod {k : Type u_4} [LinearOrderedField k] [FloorRing k] {m n : } :
fract (m / n) = ↑(m % n) / n
theorem Int.fract_div_intCast_eq_div_intCast_mod {k : Type u_4} [LinearOrderedField k] [FloorRing k] {m : } {n : } :
fract (m / n) = ↑(m % n) / n

Ceil #

theorem Int.ceil_le {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
a z a z
theorem Int.floor_neg {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
theorem Int.ceil_neg {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
theorem Int.lt_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
z < a z < a
@[simp]
theorem Int.add_one_le_ceil_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
z + 1 a z < a
@[simp]
theorem Int.one_le_ceil_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
1 a 0 < a
theorem Int.le_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a a
theorem Int.le_ceil_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
z a z - 1 < a
theorem Int.ceil_lt_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
a < z a z - 1
@[simp]
theorem Int.ceil_intCast {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (z : ) :
z = z
@[simp]
theorem Int.ceil_natCast {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (n : ) :
n = n
theorem Int.ceil_le_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a b : α} (hab : a b) :
@[simp]
theorem Int.ceil_add_int {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (z : ) :
a + z = a + z
@[simp]
theorem Int.ceil_add_nat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) :
a + n = a + n
@[simp]
theorem Int.ceil_add_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a + 1 = a + 1
@[simp]
theorem Int.ceil_add_ofNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) [n.AtLeastTwo] :
@[simp]
theorem Int.ceil_sub_int {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (z : ) :
a - z = a - z
@[simp]
theorem Int.ceil_sub_nat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) :
a - n = a - n
@[simp]
theorem Int.ceil_sub_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a - 1 = a - 1
@[simp]
theorem Int.ceil_sub_ofNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) (n : ) [n.AtLeastTwo] :
theorem Int.ceil_lt_add_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
a < a + 1
theorem Int.ceil_add_le {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a b : α) :
theorem Int.ceil_add_ceil_le {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a b : α) :
@[simp]
theorem Int.ceil_pos {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
0 < a 0 < a
@[simp]
theorem Int.ceil_zero {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
@[simp]
theorem Int.ceil_one {α : Type u_2} [LinearOrderedRing α] [FloorRing α] :
theorem Int.ceil_nonneg {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : 0 a) :
theorem Int.ceil_eq_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {z : } {a : α} :
a = z z - 1 < a a z
@[simp]
theorem Int.ceil_eq_zero_iff {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} :
a = 0 a Set.Ioc (-1) 0
theorem Int.ceil_eq_on_Ioc {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (z : ) (a : α) :
a Set.Ioc (z - 1) za = z
theorem Int.ceil_eq_on_Ioc' {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (z : ) (a : α) :
a Set.Ioc (z - 1) za = z
theorem Int.floor_le_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
theorem Int.floor_lt_ceil_of_lt {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a b : α} (h : a < b) :
@[simp]
theorem Int.preimage_ceil_singleton {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (m : ) :
ceil ⁻¹' {m} = Set.Ioc (m - 1) m
theorem Int.fract_eq_zero_or_add_one_sub_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
fract a = 0 fract a = a + 1 - a
theorem Int.ceil_eq_add_one_sub_fract {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : fract a 0) :
a = a + 1 - fract a
theorem Int.ceil_sub_self_eq {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : fract a 0) :
a - a = 1 - fract a
theorem Int.mul_lt_floor {k : Type u_4} [LinearOrderedField k] [FloorRing k] {a b : k} (hb₀ : 0 < b) (hb : b < 1) (hba : b / (1 - b) a) :
b * a < a
theorem Int.ceil_div_ceil_inv_sub_one {k : Type u_4} [LinearOrderedField k] [FloorRing k] {a : k} (ha : 1 a) :
theorem Int.ceil_lt_mul {k : Type u_4} [LinearOrderedField k] [FloorRing k] {a b : k} (hb : 1 < b) (hba : (b - 1)⁻¹ / b < a) :
a < b * a
theorem Int.ceil_le_mul {k : Type u_4} [LinearOrderedField k] [FloorRing k] {a b : k} (hb : 1 < b) (hba : (b - 1)⁻¹ / b a) :
a b * a
theorem Int.div_two_lt_floor {k : Type u_4} [LinearOrderedField k] [FloorRing k] {a : k} (ha : 1 a) :
a / 2 < a
theorem Int.ceil_lt_two_mul {k : Type u_4} [LinearOrderedField k] [FloorRing k] {a : k} (ha : 2⁻¹ < a) :
a < 2 * a
theorem Int.ceil_le_two_mul {k : Type u_4} [LinearOrderedField k] [FloorRing k] {a : k} (ha : 2⁻¹ a) :
a 2 * a

Intervals #

@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem Nat.floor_congr {α : Type u_2} {β : Type u_3} [LinearOrderedSemiring α] [LinearOrderedSemiring β] [FloorSemiring α] [FloorSemiring β] {a : α} {b : β} (h : ∀ (n : ), n a n b) :
theorem Nat.ceil_congr {α : Type u_2} {β : Type u_3} [LinearOrderedSemiring α] [LinearOrderedSemiring β] [FloorSemiring α] [FloorSemiring β] {a : α} {b : β} (h : ∀ (n : ), a n b n) :
theorem Nat.map_floor {F : Type u_1} {α : Type u_2} {β : Type u_3} [LinearOrderedSemiring α] [LinearOrderedSemiring β] [FloorSemiring α] [FloorSemiring β] [FunLike F α β] [RingHomClass F α β] (f : F) (hf : StrictMono f) (a : α) :
theorem Nat.map_ceil {F : Type u_1} {α : Type u_2} {β : Type u_3} [LinearOrderedSemiring α] [LinearOrderedSemiring β] [FloorSemiring α] [FloorSemiring β] [FunLike F α β] [RingHomClass F α β] (f : F) (hf : StrictMono f) (a : α) :
theorem Int.floor_congr {α : Type u_2} {β : Type u_3} [LinearOrderedRing α] [LinearOrderedRing β] [FloorRing α] [FloorRing β] {a : α} {b : β} (h : ∀ (n : ), n a n b) :
theorem Int.ceil_congr {α : Type u_2} {β : Type u_3} [LinearOrderedRing α] [LinearOrderedRing β] [FloorRing α] [FloorRing β] {a : α} {b : β} (h : ∀ (n : ), a n b n) :
theorem Int.map_floor {F : Type u_1} {α : Type u_2} {β : Type u_3} [LinearOrderedRing α] [LinearOrderedRing β] [FloorRing α] [FloorRing β] [FunLike F α β] [RingHomClass F α β] (f : F) (hf : StrictMono f) (a : α) :
theorem Int.map_ceil {F : Type u_1} {α : Type u_2} {β : Type u_3} [LinearOrderedRing α] [LinearOrderedRing β] [FloorRing α] [FloorRing β] [FunLike F α β] [RingHomClass F α β] (f : F) (hf : StrictMono f) (a : α) :
theorem Int.map_fract {F : Type u_1} {α : Type u_2} {β : Type u_3} [LinearOrderedRing α] [LinearOrderedRing β] [FloorRing α] [FloorRing β] [FunLike F α β] [RingHomClass F α β] (f : F) (hf : StrictMono f) (a : α) :
fract (f a) = f (fract a)

A floor ring as a floor semiring #

@[instance 100]
Equations
theorem Int.floor_toNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
theorem Int.ceil_toNat {α : Type u_2} [LinearOrderedRing α] [FloorRing α] (a : α) :
theorem Int.natCast_floor_eq_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : 0 a) :
theorem Int.natCast_ceil_eq_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : 0 a) :
theorem natCast_floor_eq_intCast_floor {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : 0 a) :
theorem natCast_ceil_eq_intCast_ceil {α : Type u_2} [LinearOrderedRing α] [FloorRing α] {a : α} (ha : 0 a) :

There exists at most one FloorRing structure on a given linear ordered ring.

Extension for the positivity tactic: Int.floor is nonnegative if its input is.

Extension for the positivity tactic: Nat.ceil is positive if its input is.

Extension for the positivity tactic: Int.ceil is positive/nonnegative if its input is.