Documentation

Mathlib.Algebra.Order.Group.MinMax

min and max in linearly ordered groups. #

@[simp]
theorem max_one_div_max_inv_one_eq_self {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] (a : α) :
(a 1) / (a⁻¹ 1) = a
@[simp]
theorem max_zero_sub_max_neg_zero_eq_self {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] (a : α) :
a 0 - -a 0 = a
theorem max_zero_sub_eq_self {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] (a : α) :
a 0 - -a 0 = a

Alias of max_zero_sub_max_neg_zero_eq_self.

theorem max_inv_one {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] (a : α) :
a⁻¹ 1 = a⁻¹ * (a 1)
theorem max_neg_zero {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] (a : α) :
-a 0 = -a + a 0
theorem min_inv_inv' {α : Type u_1} [LinearOrderedCommGroup α] (a : α) (b : α) :
theorem min_neg_neg {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) :
-a -b = -(a b)
theorem max_inv_inv' {α : Type u_1} [LinearOrderedCommGroup α] (a : α) (b : α) :
theorem max_neg_neg {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) :
-a -b = -(a b)
theorem min_div_div_right' {α : Type u_1} [LinearOrderedCommGroup α] (a : α) (b : α) (c : α) :
a / c b / c = (a b) / c
theorem min_sub_sub_right {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) (c : α) :
(a - c) (b - c) = a b - c
theorem max_div_div_right' {α : Type u_1} [LinearOrderedCommGroup α] (a : α) (b : α) (c : α) :
a / c b / c = (a b) / c
theorem max_sub_sub_right {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) (c : α) :
(a - c) (b - c) = a b - c
theorem min_div_div_left' {α : Type u_1} [LinearOrderedCommGroup α] (a : α) (b : α) (c : α) :
a / b a / c = a / (b c)
theorem min_sub_sub_left {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) (c : α) :
(a - b) (a - c) = a - b c
theorem max_div_div_left' {α : Type u_1} [LinearOrderedCommGroup α] (a : α) (b : α) (c : α) :
a / b a / c = a / (b c)
theorem max_sub_sub_left {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) (c : α) :
(a - b) (a - c) = a - b c
theorem max_sub_max_le_max {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) (c : α) (d : α) :
a b - c d (a - c) (b - d)
theorem abs_max_sub_max_le_max {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) (c : α) (d : α) :
|a b - c d| |a - c| |b - d|
theorem abs_min_sub_min_le_max {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) (c : α) (d : α) :
|a b - c d| |a - c| |b - d|
theorem abs_max_sub_max_le_abs {α : Type u_1} [LinearOrderedAddCommGroup α] (a : α) (b : α) (c : α) :
|a c - b c| |a - b|