Documentation

Mathlib.Algebra.Polynomial.Degree.Definitions

Theory of univariate polynomials #

The definitions include degree, Monic, leadingCoeff

Results include

degree p is the degree of the polynomial p, i.e. the largest X-exponent in p. degree p = some n when p ≠ 0 and n is the highest power of X that appears in p, otherwise degree 0 = ⊥.

Equations
  • p.degree = p.support.max
Instances For
    theorem Polynomial.supDegree_eq_degree {R : Type u} [Semiring R] (p : Polynomial R) :
    AddMonoidAlgebra.supDegree WithBot.some p.toFinsupp = p.degree
    theorem Polynomial.degree_lt_wf {R : Type u} [Semiring R] :
    WellFounded fun (p q : Polynomial R) => p.degree < q.degree
    Equations
    • Polynomial.instWellFoundedRelation = { rel := fun (p q : Polynomial R) => p.degree < q.degree, wf := }

    natDegree p forces degree p to ℕ, by defining natDegree 0 = 0.

    Equations
    Instances For
      def Polynomial.leadingCoeff {R : Type u} [Semiring R] (p : Polynomial R) :
      R

      leadingCoeff p gives the coefficient of the highest power of X in p

      Equations
      • p.leadingCoeff = p.coeff p.natDegree
      Instances For
        def Polynomial.Monic {R : Type u} [Semiring R] (p : Polynomial R) :

        a polynomial is Monic if its leading coefficient is 1

        Equations
        • p.Monic = (p.leadingCoeff = 1)
        Instances For
          theorem Polynomial.Monic.def {R : Type u} [Semiring R] {p : Polynomial R} :
          p.Monic p.leadingCoeff = 1
          instance Polynomial.Monic.decidable {R : Type u} [Semiring R] {p : Polynomial R} [DecidableEq R] :
          Decidable p.Monic
          Equations
          • Polynomial.Monic.decidable = id inferInstance
          @[simp]
          theorem Polynomial.Monic.leadingCoeff {R : Type u} [Semiring R] {p : Polynomial R} (hp : p.Monic) :
          p.leadingCoeff = 1
          theorem Polynomial.Monic.coeff_natDegree {R : Type u} [Semiring R] {p : Polynomial R} (hp : p.Monic) :
          p.coeff p.natDegree = 1
          @[simp]
          theorem Polynomial.coeff_natDegree {R : Type u} [Semiring R] {p : Polynomial R} :
          p.coeff p.natDegree = p.leadingCoeff
          @[simp]
          theorem Polynomial.degree_eq_bot {R : Type u} [Semiring R] {p : Polynomial R} :
          p.degree = p = 0
          theorem Polynomial.degree_ne_bot {R : Type u} [Semiring R] {p : Polynomial R} :
          p.degree p 0
          theorem Polynomial.natDegree_of_subsingleton {R : Type u} [Semiring R] {p : Polynomial R} [Subsingleton R] :
          p.natDegree = 0
          theorem Polynomial.degree_eq_natDegree {R : Type u} [Semiring R] {p : Polynomial R} (hp : p 0) :
          p.degree = p.natDegree
          theorem Polynomial.supDegree_eq_natDegree {R : Type u} [Semiring R] (p : Polynomial R) :
          AddMonoidAlgebra.supDegree id p.toFinsupp = p.natDegree
          theorem Polynomial.degree_eq_iff_natDegree_eq {R : Type u} [Semiring R] {p : Polynomial R} {n : } (hp : p 0) :
          p.degree = n p.natDegree = n
          theorem Polynomial.degree_eq_iff_natDegree_eq_of_pos {R : Type u} [Semiring R] {p : Polynomial R} {n : } (hn : 0 < n) :
          p.degree = n p.natDegree = n
          theorem Polynomial.natDegree_eq_of_degree_eq_some {R : Type u} [Semiring R] {p : Polynomial R} {n : } (h : p.degree = n) :
          p.natDegree = n
          theorem Polynomial.degree_ne_of_natDegree_ne {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
          p.natDegree np.degree n
          @[simp]
          theorem Polynomial.degree_le_natDegree {R : Type u} [Semiring R] {p : Polynomial R} :
          p.degree p.natDegree
          theorem Polynomial.natDegree_eq_of_degree_eq {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] {q : Polynomial S} (h : p.degree = q.degree) :
          p.natDegree = q.natDegree
          theorem Polynomial.le_degree_of_ne_zero {R : Type u} {n : } [Semiring R] {p : Polynomial R} (h : p.coeff n 0) :
          n p.degree
          theorem Polynomial.le_natDegree_of_ne_zero {R : Type u} {n : } [Semiring R] {p : Polynomial R} (h : p.coeff n 0) :
          n p.natDegree
          theorem Polynomial.le_natDegree_of_mem_supp {R : Type u} [Semiring R] {p : Polynomial R} (a : ) :
          a p.supporta p.natDegree
          theorem Polynomial.degree_eq_of_le_of_coeff_ne_zero {R : Type u} {n : } [Semiring R] {p : Polynomial R} (pn : p.degree n) (p1 : p.coeff n 0) :
          p.degree = n
          theorem Polynomial.natDegree_eq_of_le_of_coeff_ne_zero {R : Type u} {n : } [Semiring R] {p : Polynomial R} (pn : p.natDegree n) (p1 : p.coeff n 0) :
          p.natDegree = n
          theorem Polynomial.degree_mono {R : Type u} {S : Type v} [Semiring R] [Semiring S] {f : Polynomial R} {g : Polynomial S} (h : f.support g.support) :
          f.degree g.degree
          theorem Polynomial.supp_subset_range {R : Type u} {m : } [Semiring R] {p : Polynomial R} (h : p.natDegree < m) :
          p.support Finset.range m
          theorem Polynomial.supp_subset_range_natDegree_succ {R : Type u} [Semiring R] {p : Polynomial R} :
          p.support Finset.range (p.natDegree + 1)
          theorem Polynomial.degree_le_degree {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : q.coeff p.natDegree 0) :
          p.degree q.degree
          theorem Polynomial.natDegree_le_iff_degree_le {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
          p.natDegree n p.degree n
          theorem Polynomial.natDegree_lt_iff_degree_lt {R : Type u} {n : } [Semiring R] {p : Polynomial R} (hp : p 0) :
          p.natDegree < n p.degree < n
          theorem Polynomial.natDegree_le_of_degree_le {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
          p.degree np.natDegree n

          Alias of the reverse direction of Polynomial.natDegree_le_iff_degree_le.

          theorem Polynomial.degree_le_of_natDegree_le {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
          p.natDegree np.degree n

          Alias of the forward direction of Polynomial.natDegree_le_iff_degree_le.

          theorem Polynomial.natDegree_le_natDegree {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] {q : Polynomial S} (hpq : p.degree q.degree) :
          p.natDegree q.natDegree
          theorem Polynomial.natDegree_lt_natDegree {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (hp : p 0) (hpq : p.degree < q.degree) :
          p.natDegree < q.natDegree
          @[simp]
          theorem Polynomial.degree_C {R : Type u} {a : R} [Semiring R] (ha : a 0) :
          (Polynomial.C a).degree = 0
          theorem Polynomial.degree_C_le {R : Type u} {a : R} [Semiring R] :
          (Polynomial.C a).degree 0
          theorem Polynomial.degree_C_lt {R : Type u} {a : R} [Semiring R] :
          (Polynomial.C a).degree < 1
          @[simp]
          theorem Polynomial.natDegree_C {R : Type u} [Semiring R] (a : R) :
          (Polynomial.C a).natDegree = 0
          @[simp]
          theorem Polynomial.natDegree_natCast {R : Type u} [Semiring R] (n : ) :
          (↑n).natDegree = 0
          @[deprecated Polynomial.natDegree_natCast]
          theorem Polynomial.natDegree_nat_cast {R : Type u} [Semiring R] (n : ) :
          (↑n).natDegree = 0

          Alias of Polynomial.natDegree_natCast.

          @[simp]
          theorem Polynomial.natDegree_ofNat {R : Type u} [Semiring R] (n : ) [n.AtLeastTwo] :
          (OfNat.ofNat n).natDegree = 0
          theorem Polynomial.degree_natCast_le {R : Type u} [Semiring R] (n : ) :
          (↑n).degree 0
          @[deprecated Polynomial.degree_natCast_le]
          theorem Polynomial.degree_nat_cast_le {R : Type u} [Semiring R] (n : ) :
          (↑n).degree 0

          Alias of Polynomial.degree_natCast_le.

          @[simp]
          theorem Polynomial.degree_monomial {R : Type u} {a : R} [Semiring R] (n : ) (ha : a 0) :
          ((Polynomial.monomial n) a).degree = n
          @[simp]
          theorem Polynomial.degree_C_mul_X_pow {R : Type u} {a : R} [Semiring R] (n : ) (ha : a 0) :
          (Polynomial.C a * Polynomial.X ^ n).degree = n
          theorem Polynomial.degree_C_mul_X {R : Type u} {a : R} [Semiring R] (ha : a 0) :
          (Polynomial.C a * Polynomial.X).degree = 1
          theorem Polynomial.degree_monomial_le {R : Type u} [Semiring R] (n : ) (a : R) :
          ((Polynomial.monomial n) a).degree n
          theorem Polynomial.degree_C_mul_X_pow_le {R : Type u} [Semiring R] (n : ) (a : R) :
          (Polynomial.C a * Polynomial.X ^ n).degree n
          theorem Polynomial.degree_C_mul_X_le {R : Type u} [Semiring R] (a : R) :
          (Polynomial.C a * Polynomial.X).degree 1
          @[simp]
          theorem Polynomial.natDegree_C_mul_X_pow {R : Type u} [Semiring R] (n : ) (a : R) (ha : a 0) :
          (Polynomial.C a * Polynomial.X ^ n).natDegree = n
          @[simp]
          theorem Polynomial.natDegree_C_mul_X {R : Type u} [Semiring R] (a : R) (ha : a 0) :
          (Polynomial.C a * Polynomial.X).natDegree = 1
          @[simp]
          theorem Polynomial.natDegree_monomial {R : Type u} [Semiring R] [DecidableEq R] (i : ) (r : R) :
          ((Polynomial.monomial i) r).natDegree = if r = 0 then 0 else i
          theorem Polynomial.natDegree_monomial_le {R : Type u} [Semiring R] (a : R) {m : } :
          ((Polynomial.monomial m) a).natDegree m
          theorem Polynomial.natDegree_monomial_eq {R : Type u} [Semiring R] (i : ) {r : R} (r0 : r 0) :
          ((Polynomial.monomial i) r).natDegree = i
          theorem Polynomial.coeff_eq_zero_of_degree_lt {R : Type u} {n : } [Semiring R] {p : Polynomial R} (h : p.degree < n) :
          p.coeff n = 0
          theorem Polynomial.coeff_eq_zero_of_natDegree_lt {R : Type u} [Semiring R] {p : Polynomial R} {n : } (h : p.natDegree < n) :
          p.coeff n = 0
          theorem Polynomial.ext_iff_natDegree_le {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {n : } (hp : p.natDegree n) (hq : q.natDegree n) :
          p = q in, p.coeff i = q.coeff i
          theorem Polynomial.ext_iff_degree_le {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {n : } (hp : p.degree n) (hq : q.degree n) :
          p = q in, p.coeff i = q.coeff i
          @[simp]
          theorem Polynomial.coeff_natDegree_succ_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} :
          p.coeff (p.natDegree + 1) = 0
          theorem Polynomial.ite_le_natDegree_coeff {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (I : Decidable (n < 1 + p.natDegree)) :
          (if n < 1 + p.natDegree then p.coeff n else 0) = p.coeff n
          theorem Polynomial.as_sum_support {R : Type u} [Semiring R] (p : Polynomial R) :
          p = ip.support, (Polynomial.monomial i) (p.coeff i)
          theorem Polynomial.as_sum_support_C_mul_X_pow {R : Type u} [Semiring R] (p : Polynomial R) :
          p = ip.support, Polynomial.C (p.coeff i) * Polynomial.X ^ i
          theorem Polynomial.sum_over_range' {R : Type u} {S : Type v} [Semiring R] [AddCommMonoid S] (p : Polynomial R) {f : RS} (h : ∀ (n : ), f n 0 = 0) (n : ) (w : p.natDegree < n) :
          p.sum f = aFinset.range n, f a (p.coeff a)

          We can reexpress a sum over p.support as a sum over range n, for any n satisfying p.natDegree < n.

          theorem Polynomial.sum_over_range {R : Type u} {S : Type v} [Semiring R] [AddCommMonoid S] (p : Polynomial R) {f : RS} (h : ∀ (n : ), f n 0 = 0) :
          p.sum f = aFinset.range (p.natDegree + 1), f a (p.coeff a)

          We can reexpress a sum over p.support as a sum over range (p.natDegree + 1).

          theorem Polynomial.sum_fin {R : Type u} {S : Type v} [Semiring R] [AddCommMonoid S] (f : RS) (hf : ∀ (i : ), f i 0 = 0) {n : } {p : Polynomial R} (hn : p.degree < n) :
          i : Fin n, f (↑i) (p.coeff i) = p.sum f
          theorem Polynomial.as_sum_range' {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (w : p.natDegree < n) :
          p = iFinset.range n, (Polynomial.monomial i) (p.coeff i)
          theorem Polynomial.as_sum_range {R : Type u} [Semiring R] (p : Polynomial R) :
          p = iFinset.range (p.natDegree + 1), (Polynomial.monomial i) (p.coeff i)
          theorem Polynomial.as_sum_range_C_mul_X_pow {R : Type u} [Semiring R] (p : Polynomial R) :
          p = iFinset.range (p.natDegree + 1), Polynomial.C (p.coeff i) * Polynomial.X ^ i
          theorem Polynomial.coeff_ne_zero_of_eq_degree {R : Type u} {n : } [Semiring R] {p : Polynomial R} (hn : p.degree = n) :
          p.coeff n 0
          theorem Polynomial.eq_X_add_C_of_degree_le_one {R : Type u} [Semiring R] {p : Polynomial R} (h : p.degree 1) :
          p = Polynomial.C (p.coeff 1) * Polynomial.X + Polynomial.C (p.coeff 0)
          theorem Polynomial.eq_X_add_C_of_degree_eq_one {R : Type u} [Semiring R] {p : Polynomial R} (h : p.degree = 1) :
          p = Polynomial.C p.leadingCoeff * Polynomial.X + Polynomial.C (p.coeff 0)
          theorem Polynomial.eq_X_add_C_of_natDegree_le_one {R : Type u} [Semiring R] {p : Polynomial R} (h : p.natDegree 1) :
          p = Polynomial.C (p.coeff 1) * Polynomial.X + Polynomial.C (p.coeff 0)
          theorem Polynomial.Monic.eq_X_add_C {R : Type u} [Semiring R] {p : Polynomial R} (hm : p.Monic) (hnd : p.natDegree = 1) :
          p = Polynomial.X + Polynomial.C (p.coeff 0)
          theorem Polynomial.exists_eq_X_add_C_of_natDegree_le_one {R : Type u} [Semiring R] {p : Polynomial R} (h : p.natDegree 1) :
          ∃ (a : R) (b : R), p = Polynomial.C a * Polynomial.X + Polynomial.C b
          theorem Polynomial.degree_X_pow_le {R : Type u} [Semiring R] (n : ) :
          (Polynomial.X ^ n).degree n
          theorem Polynomial.degree_X_le {R : Type u} [Semiring R] :
          Polynomial.X.degree 1
          theorem Polynomial.natDegree_X_le {R : Type u} [Semiring R] :
          Polynomial.X.natDegree 1
          theorem Polynomial.mem_support_C_mul_X_pow {R : Type u} [Semiring R] {n : } {a : } {c : R} (h : a (Polynomial.C c * Polynomial.X ^ n).support) :
          a = n
          theorem Polynomial.card_support_C_mul_X_pow_le_one {R : Type u} [Semiring R] {c : R} {n : } :
          (Polynomial.C c * Polynomial.X ^ n).support.card 1
          theorem Polynomial.card_supp_le_succ_natDegree {R : Type u} [Semiring R] (p : Polynomial R) :
          p.support.card p.natDegree + 1
          theorem Polynomial.le_degree_of_mem_supp {R : Type u} [Semiring R] {p : Polynomial R} (a : ) :
          a p.supporta p.degree
          theorem Polynomial.nonempty_support_iff {R : Type u} [Semiring R] {p : Polynomial R} :
          p.support.Nonempty p 0
          @[simp]
          theorem Polynomial.degree_X {R : Type u} [Semiring R] [Nontrivial R] :
          Polynomial.X.degree = 1
          @[simp]
          theorem Polynomial.natDegree_X {R : Type u} [Semiring R] [Nontrivial R] :
          Polynomial.X.natDegree = 1
          theorem Polynomial.coeff_mul_X_sub_C {R : Type u} [Ring R] {p : Polynomial R} {r : R} {a : } :
          (p * (Polynomial.X - Polynomial.C r)).coeff (a + 1) = p.coeff a - p.coeff (a + 1) * r
          @[simp]
          theorem Polynomial.degree_neg {R : Type u} [Ring R] (p : Polynomial R) :
          (-p).degree = p.degree
          theorem Polynomial.degree_neg_le_of_le {R : Type u} [Ring R] {a : WithBot } {p : Polynomial R} (hp : p.degree a) :
          (-p).degree a
          @[simp]
          theorem Polynomial.natDegree_neg {R : Type u} [Ring R] (p : Polynomial R) :
          (-p).natDegree = p.natDegree
          theorem Polynomial.natDegree_neg_le_of_le {R : Type u} {m : } [Ring R] {p : Polynomial R} (hp : p.natDegree m) :
          (-p).natDegree m
          @[simp]
          theorem Polynomial.natDegree_intCast {R : Type u} [Ring R] (n : ) :
          (↑n).natDegree = 0
          @[deprecated Polynomial.natDegree_intCast]
          theorem Polynomial.natDegree_int_cast {R : Type u} [Ring R] (n : ) :
          (↑n).natDegree = 0

          Alias of Polynomial.natDegree_intCast.

          theorem Polynomial.degree_intCast_le {R : Type u} [Ring R] (n : ) :
          (↑n).degree 0
          @[deprecated Polynomial.degree_intCast_le]
          theorem Polynomial.degree_int_cast_le {R : Type u} [Ring R] (n : ) :
          (↑n).degree 0

          Alias of Polynomial.degree_intCast_le.

          @[simp]
          theorem Polynomial.leadingCoeff_neg {R : Type u} [Ring R] (p : Polynomial R) :
          (-p).leadingCoeff = -p.leadingCoeff
          def Polynomial.nextCoeff {R : Type u} [Semiring R] (p : Polynomial R) :
          R

          The second-highest coefficient, or 0 for constants

          Equations
          • p.nextCoeff = if p.natDegree = 0 then 0 else p.coeff (p.natDegree - 1)
          Instances For
            theorem Polynomial.nextCoeff_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} :
            p.nextCoeff = 0 p.natDegree = 0 0 < p.natDegree p.coeff (p.natDegree - 1) = 0
            theorem Polynomial.nextCoeff_ne_zero {R : Type u} [Semiring R] {p : Polynomial R} :
            p.nextCoeff 0 p.natDegree 0 p.coeff (p.natDegree - 1) 0
            @[simp]
            theorem Polynomial.nextCoeff_C_eq_zero {R : Type u} [Semiring R] (c : R) :
            (Polynomial.C c).nextCoeff = 0
            theorem Polynomial.nextCoeff_of_natDegree_pos {R : Type u} [Semiring R] {p : Polynomial R} (hp : 0 < p.natDegree) :
            p.nextCoeff = p.coeff (p.natDegree - 1)
            theorem Polynomial.coeff_natDegree_eq_zero_of_degree_lt {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.degree < q.degree) :
            p.coeff q.natDegree = 0
            theorem Polynomial.ne_zero_of_degree_gt {R : Type u} [Semiring R] {p : Polynomial R} {n : WithBot } (h : n < p.degree) :
            p 0
            theorem Polynomial.ne_zero_of_degree_ge_degree {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (hpq : p.degree q.degree) (hp : p 0) :
            q 0
            theorem Polynomial.ne_zero_of_natDegree_gt {R : Type u} [Semiring R] {p : Polynomial R} {n : } (h : n < p.natDegree) :
            p 0
            theorem Polynomial.degree_lt_degree {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.natDegree < q.natDegree) :
            p.degree < q.degree
            theorem Polynomial.natDegree_lt_natDegree_iff {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (hp : p 0) :
            p.natDegree < q.natDegree p.degree < q.degree
            theorem Polynomial.eq_C_of_degree_le_zero {R : Type u} [Semiring R] {p : Polynomial R} (h : p.degree 0) :
            p = Polynomial.C (p.coeff 0)
            theorem Polynomial.eq_C_of_degree_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} (h : p.degree = 0) :
            p = Polynomial.C (p.coeff 0)
            theorem Polynomial.degree_le_zero_iff {R : Type u} [Semiring R] {p : Polynomial R} :
            p.degree 0 p = Polynomial.C (p.coeff 0)
            theorem Polynomial.degree_add_le {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) :
            (p + q).degree p.degree q.degree
            theorem Polynomial.degree_add_le_of_degree_le {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {n : } (hp : p.degree n) (hq : q.degree n) :
            (p + q).degree n
            theorem Polynomial.degree_add_le_of_le {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {a : WithBot } {b : WithBot } (hp : p.degree a) (hq : q.degree b) :
            (p + q).degree a b
            theorem Polynomial.natDegree_add_le {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) :
            (p + q).natDegree p.natDegree q.natDegree
            theorem Polynomial.natDegree_add_le_of_degree_le {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {n : } (hp : p.natDegree n) (hq : q.natDegree n) :
            (p + q).natDegree n
            theorem Polynomial.natDegree_add_le_of_le {R : Type u} {n : } {m : } [Semiring R] {p : Polynomial R} {q : Polynomial R} (hp : p.natDegree m) (hq : q.natDegree n) :
            (p + q).natDegree m n
            @[simp]
            theorem Polynomial.leadingCoeff_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} :
            p.leadingCoeff = 0 p = 0
            theorem Polynomial.leadingCoeff_ne_zero {R : Type u} [Semiring R] {p : Polynomial R} :
            p.leadingCoeff 0 p 0
            theorem Polynomial.leadingCoeff_eq_zero_iff_deg_eq_bot {R : Type u} [Semiring R] {p : Polynomial R} :
            p.leadingCoeff = 0 p.degree =
            theorem Polynomial.natDegree_le_pred {R : Type u} {n : } [Semiring R] {p : Polynomial R} (hf : p.natDegree n) (hn : p.coeff n = 0) :
            p.natDegree n - 1
            theorem Polynomial.natDegree_mem_support_of_nonzero {R : Type u} [Semiring R] {p : Polynomial R} (H : p 0) :
            p.natDegree p.support
            theorem Polynomial.natDegree_eq_support_max' {R : Type u} [Semiring R] {p : Polynomial R} (h : p 0) :
            p.natDegree = p.support.max'
            theorem Polynomial.natDegree_C_mul_X_pow_le {R : Type u} [Semiring R] (a : R) (n : ) :
            (Polynomial.C a * Polynomial.X ^ n).natDegree n
            theorem Polynomial.degree_add_eq_left_of_degree_lt {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : q.degree < p.degree) :
            (p + q).degree = p.degree
            theorem Polynomial.degree_add_eq_right_of_degree_lt {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.degree < q.degree) :
            (p + q).degree = q.degree
            theorem Polynomial.natDegree_add_eq_left_of_degree_lt {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : q.degree < p.degree) :
            (p + q).natDegree = p.natDegree
            theorem Polynomial.natDegree_add_eq_left_of_natDegree_lt {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : q.natDegree < p.natDegree) :
            (p + q).natDegree = p.natDegree
            theorem Polynomial.natDegree_add_eq_right_of_degree_lt {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.degree < q.degree) :
            (p + q).natDegree = q.natDegree
            theorem Polynomial.natDegree_add_eq_right_of_natDegree_lt {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.natDegree < q.natDegree) :
            (p + q).natDegree = q.natDegree
            theorem Polynomial.degree_add_C {R : Type u} {a : R} [Semiring R] {p : Polynomial R} (hp : 0 < p.degree) :
            (p + Polynomial.C a).degree = p.degree
            @[simp]
            theorem Polynomial.natDegree_add_C {R : Type u} [Semiring R] {p : Polynomial R} {a : R} :
            (p + Polynomial.C a).natDegree = p.natDegree
            @[simp]
            theorem Polynomial.natDegree_C_add {R : Type u} [Semiring R] {p : Polynomial R} {a : R} :
            (Polynomial.C a + p).natDegree = p.natDegree
            theorem Polynomial.degree_add_eq_of_leadingCoeff_add_ne_zero {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.leadingCoeff + q.leadingCoeff 0) :
            (p + q).degree = p.degree q.degree
            theorem Polynomial.natDegree_eq_of_natDegree_add_lt_left {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) (H : (p + q).natDegree < p.natDegree) :
            p.natDegree = q.natDegree
            theorem Polynomial.natDegree_eq_of_natDegree_add_lt_right {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) (H : (p + q).natDegree < q.natDegree) :
            p.natDegree = q.natDegree
            theorem Polynomial.natDegree_eq_of_natDegree_add_eq_zero {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) (H : (p + q).natDegree = 0) :
            p.natDegree = q.natDegree
            theorem Polynomial.degree_erase_le {R : Type u} [Semiring R] (p : Polynomial R) (n : ) :
            (Polynomial.erase n p).degree p.degree
            theorem Polynomial.degree_erase_lt {R : Type u} [Semiring R] {p : Polynomial R} (hp : p 0) :
            (Polynomial.erase p.natDegree p).degree < p.degree
            theorem Polynomial.degree_update_le {R : Type u} [Semiring R] (p : Polynomial R) (n : ) (a : R) :
            (p.update n a).degree p.degree n
            theorem Polynomial.degree_sum_le {R : Type u} [Semiring R] {ι : Type u_1} (s : Finset ι) (f : ιPolynomial R) :
            (∑ is, f i).degree s.sup fun (b : ι) => (f b).degree
            theorem Polynomial.degree_mul_le {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) :
            (p * q).degree p.degree + q.degree
            theorem Polynomial.degree_mul_le_of_le {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {a : WithBot } {b : WithBot } (hp : p.degree a) (hq : q.degree b) :
            (p * q).degree a + b
            theorem Polynomial.degree_pow_le {R : Type u} [Semiring R] (p : Polynomial R) (n : ) :
            (p ^ n).degree n p.degree
            theorem Polynomial.degree_pow_le_of_le {R : Type u} [Semiring R] {p : Polynomial R} {a : WithBot } (b : ) (hp : p.degree a) :
            (p ^ b).degree b * a
            @[simp]
            theorem Polynomial.leadingCoeff_monomial {R : Type u} [Semiring R] (a : R) (n : ) :
            ((Polynomial.monomial n) a).leadingCoeff = a
            theorem Polynomial.leadingCoeff_C_mul_X_pow {R : Type u} [Semiring R] (a : R) (n : ) :
            (Polynomial.C a * Polynomial.X ^ n).leadingCoeff = a
            theorem Polynomial.leadingCoeff_C_mul_X {R : Type u} [Semiring R] (a : R) :
            (Polynomial.C a * Polynomial.X).leadingCoeff = a
            @[simp]
            theorem Polynomial.leadingCoeff_C {R : Type u} [Semiring R] (a : R) :
            (Polynomial.C a).leadingCoeff = a
            theorem Polynomial.leadingCoeff_X_pow {R : Type u} [Semiring R] (n : ) :
            (Polynomial.X ^ n).leadingCoeff = 1
            theorem Polynomial.leadingCoeff_X {R : Type u} [Semiring R] :
            Polynomial.X.leadingCoeff = 1
            @[simp]
            theorem Polynomial.monic_X_pow {R : Type u} [Semiring R] (n : ) :
            (Polynomial.X ^ n).Monic
            @[simp]
            theorem Polynomial.monic_X {R : Type u} [Semiring R] :
            Polynomial.X.Monic
            theorem Polynomial.Monic.ne_zero {R : Type u_2} [Semiring R] [Nontrivial R] {p : Polynomial R} (hp : p.Monic) :
            p 0
            theorem Polynomial.Monic.ne_zero_of_ne {R : Type u} [Semiring R] (h : 0 1) {p : Polynomial R} (hp : p.Monic) :
            p 0
            theorem Polynomial.monic_of_natDegree_le_of_coeff_eq_one {R : Type u} [Semiring R] {p : Polynomial R} (n : ) (pn : p.natDegree n) (p1 : p.coeff n = 1) :
            p.Monic
            theorem Polynomial.monic_of_degree_le_of_coeff_eq_one {R : Type u} [Semiring R] {p : Polynomial R} (n : ) (pn : p.degree n) (p1 : p.coeff n = 1) :
            p.Monic
            theorem Polynomial.Monic.ne_zero_of_polynomial_ne {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} {r : Polynomial R} (hp : p.Monic) (hne : q r) :
            p 0
            theorem Polynomial.leadingCoeff_add_of_degree_lt {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.degree < q.degree) :
            (p + q).leadingCoeff = q.leadingCoeff
            theorem Polynomial.leadingCoeff_add_of_degree_lt' {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : q.degree < p.degree) :
            (p + q).leadingCoeff = p.leadingCoeff
            theorem Polynomial.leadingCoeff_add_of_degree_eq {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.degree = q.degree) (hlc : p.leadingCoeff + q.leadingCoeff 0) :
            (p + q).leadingCoeff = p.leadingCoeff + q.leadingCoeff
            @[simp]
            theorem Polynomial.coeff_mul_degree_add_degree {R : Type u} [Semiring R] (p : Polynomial R) (q : Polynomial R) :
            (p * q).coeff (p.natDegree + q.natDegree) = p.leadingCoeff * q.leadingCoeff
            theorem Polynomial.degree_mul' {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.leadingCoeff * q.leadingCoeff 0) :
            (p * q).degree = p.degree + q.degree
            theorem Polynomial.Monic.degree_mul {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (hq : q.Monic) :
            (p * q).degree = p.degree + q.degree
            theorem Polynomial.natDegree_mul' {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.leadingCoeff * q.leadingCoeff 0) :
            (p * q).natDegree = p.natDegree + q.natDegree
            theorem Polynomial.leadingCoeff_mul' {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (h : p.leadingCoeff * q.leadingCoeff 0) :
            (p * q).leadingCoeff = p.leadingCoeff * q.leadingCoeff
            theorem Polynomial.monomial_natDegree_leadingCoeff_eq_self {R : Type u} [Semiring R] {p : Polynomial R} (h : p.support.card 1) :
            (Polynomial.monomial p.natDegree) p.leadingCoeff = p
            theorem Polynomial.C_mul_X_pow_eq_self {R : Type u} [Semiring R] {p : Polynomial R} (h : p.support.card 1) :
            Polynomial.C p.leadingCoeff * Polynomial.X ^ p.natDegree = p
            theorem Polynomial.leadingCoeff_pow' {R : Type u} {n : } [Semiring R] {p : Polynomial R} :
            p.leadingCoeff ^ n 0(p ^ n).leadingCoeff = p.leadingCoeff ^ n
            theorem Polynomial.degree_pow' {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
            p.leadingCoeff ^ n 0(p ^ n).degree = n p.degree
            theorem Polynomial.natDegree_pow' {R : Type u} [Semiring R] {p : Polynomial R} {n : } (h : p.leadingCoeff ^ n 0) :
            (p ^ n).natDegree = n * p.natDegree
            theorem Polynomial.leadingCoeff_monic_mul {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (hp : p.Monic) :
            (p * q).leadingCoeff = q.leadingCoeff
            theorem Polynomial.leadingCoeff_mul_monic {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} (hq : q.Monic) :
            (p * q).leadingCoeff = p.leadingCoeff
            @[simp]
            theorem Polynomial.leadingCoeff_mul_X_pow {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
            (p * Polynomial.X ^ n).leadingCoeff = p.leadingCoeff
            @[simp]
            theorem Polynomial.leadingCoeff_mul_X {R : Type u} [Semiring R] {p : Polynomial R} :
            (p * Polynomial.X).leadingCoeff = p.leadingCoeff
            theorem Polynomial.natDegree_mul_le {R : Type u} [Semiring R] {p : Polynomial R} {q : Polynomial R} :
            (p * q).natDegree p.natDegree + q.natDegree
            theorem Polynomial.natDegree_mul_le_of_le {R : Type u} {n : } {m : } [Semiring R] {p : Polynomial R} {q : Polynomial R} (hp : p.natDegree m) (hg : q.natDegree n) :
            (p * q).natDegree m + n
            theorem Polynomial.natDegree_pow_le {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
            (p ^ n).natDegree n * p.natDegree
            theorem Polynomial.natDegree_pow_le_of_le {R : Type u} {m : } [Semiring R] {p : Polynomial R} (n : ) (hp : p.natDegree m) :
            (p ^ n).natDegree n * m
            @[simp]
            theorem Polynomial.coeff_pow_mul_natDegree {R : Type u} [Semiring R] (p : Polynomial R) (n : ) :
            (p ^ n).coeff (n * p.natDegree) = p.leadingCoeff ^ n
            theorem Polynomial.coeff_mul_add_eq_of_natDegree_le {R : Type u} [Semiring R] {df : } {dg : } {f : Polynomial R} {g : Polynomial R} (hdf : f.natDegree df) (hdg : g.natDegree dg) :
            (f * g).coeff (df + dg) = f.coeff df * g.coeff dg
            theorem Polynomial.zero_le_degree_iff {R : Type u} [Semiring R] {p : Polynomial R} :
            0 p.degree p 0
            theorem Polynomial.natDegree_eq_zero_iff_degree_le_zero {R : Type u} [Semiring R] {p : Polynomial R} :
            p.natDegree = 0 p.degree 0
            theorem Polynomial.degree_le_iff_coeff_zero {R : Type u} [Semiring R] (f : Polynomial R) (n : WithBot ) :
            f.degree n ∀ (m : ), n < mf.coeff m = 0
            theorem Polynomial.degree_lt_iff_coeff_zero {R : Type u} [Semiring R] (f : Polynomial R) (n : ) :
            f.degree < n ∀ (m : ), n mf.coeff m = 0
            theorem Polynomial.degree_smul_le {R : Type u} [Semiring R] (a : R) (p : Polynomial R) :
            (a p).degree p.degree
            theorem Polynomial.natDegree_smul_le {R : Type u} [Semiring R] (a : R) (p : Polynomial R) :
            (a p).natDegree p.natDegree
            theorem Polynomial.degree_lt_degree_mul_X {R : Type u} [Semiring R] {p : Polynomial R} (hp : p 0) :
            p.degree < (p * Polynomial.X).degree
            theorem Polynomial.natDegree_pos_iff_degree_pos {R : Type u} [Semiring R] {p : Polynomial R} :
            0 < p.natDegree 0 < p.degree
            theorem Polynomial.eq_C_of_natDegree_le_zero {R : Type u} [Semiring R] {p : Polynomial R} (h : p.natDegree 0) :
            p = Polynomial.C (p.coeff 0)
            theorem Polynomial.eq_C_of_natDegree_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} (h : p.natDegree = 0) :
            p = Polynomial.C (p.coeff 0)
            theorem Polynomial.natDegree_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} :
            p.natDegree = 0 ∃ (x : R), Polynomial.C x = p
            theorem Polynomial.eq_C_coeff_zero_iff_natDegree_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} :
            p = Polynomial.C (p.coeff 0) p.natDegree = 0
            theorem Polynomial.eq_one_of_monic_natDegree_zero {R : Type u} [Semiring R] {p : Polynomial R} (hf : p.Monic) (hfd : p.natDegree = 0) :
            p = 1
            theorem Polynomial.Monic.natDegree_eq_zero {R : Type u} [Semiring R] {p : Polynomial R} (hf : p.Monic) :
            p.natDegree = 0 p = 1
            theorem Polynomial.ne_zero_of_coe_le_degree {R : Type u} {n : } [Semiring R] {p : Polynomial R} (hdeg : n p.degree) :
            p 0
            theorem Polynomial.le_natDegree_of_coe_le_degree {R : Type u} {n : } [Semiring R] {p : Polynomial R} (hdeg : n p.degree) :
            n p.natDegree
            theorem Polynomial.degree_sum_fin_lt {R : Type u} [Semiring R] {n : } (f : Fin nR) :
            (∑ i : Fin n, Polynomial.C (f i) * Polynomial.X ^ i).degree < n
            theorem Polynomial.degree_linear_le {R : Type u} {a : R} {b : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X + Polynomial.C b).degree 1
            theorem Polynomial.degree_linear_lt {R : Type u} {a : R} {b : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X + Polynomial.C b).degree < 2
            theorem Polynomial.degree_C_lt_degree_C_mul_X {R : Type u} {a : R} {b : R} [Semiring R] (ha : a 0) :
            (Polynomial.C b).degree < (Polynomial.C a * Polynomial.X).degree
            @[simp]
            theorem Polynomial.degree_linear {R : Type u} {a : R} {b : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X + Polynomial.C b).degree = 1
            theorem Polynomial.natDegree_linear_le {R : Type u} {a : R} {b : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X + Polynomial.C b).natDegree 1
            theorem Polynomial.natDegree_linear {R : Type u} {a : R} {b : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X + Polynomial.C b).natDegree = 1
            @[simp]
            theorem Polynomial.leadingCoeff_linear {R : Type u} {a : R} {b : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X + Polynomial.C b).leadingCoeff = a
            theorem Polynomial.degree_quadratic_le {R : Type u} {a : R} {b : R} {c : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X ^ 2 + Polynomial.C b * Polynomial.X + Polynomial.C c).degree 2
            theorem Polynomial.degree_quadratic_lt {R : Type u} {a : R} {b : R} {c : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X ^ 2 + Polynomial.C b * Polynomial.X + Polynomial.C c).degree < 3
            theorem Polynomial.degree_linear_lt_degree_C_mul_X_sq {R : Type u} {a : R} {b : R} {c : R} [Semiring R] (ha : a 0) :
            (Polynomial.C b * Polynomial.X + Polynomial.C c).degree < (Polynomial.C a * Polynomial.X ^ 2).degree
            @[simp]
            theorem Polynomial.degree_quadratic {R : Type u} {a : R} {b : R} {c : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X ^ 2 + Polynomial.C b * Polynomial.X + Polynomial.C c).degree = 2
            theorem Polynomial.natDegree_quadratic_le {R : Type u} {a : R} {b : R} {c : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X ^ 2 + Polynomial.C b * Polynomial.X + Polynomial.C c).natDegree 2
            theorem Polynomial.natDegree_quadratic {R : Type u} {a : R} {b : R} {c : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X ^ 2 + Polynomial.C b * Polynomial.X + Polynomial.C c).natDegree = 2
            @[simp]
            theorem Polynomial.leadingCoeff_quadratic {R : Type u} {a : R} {b : R} {c : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X ^ 2 + Polynomial.C b * Polynomial.X + Polynomial.C c).leadingCoeff = a
            theorem Polynomial.degree_cubic_le {R : Type u} {a : R} {b : R} {c : R} {d : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X ^ 3 + Polynomial.C b * Polynomial.X ^ 2 + Polynomial.C c * Polynomial.X + Polynomial.C d).degree 3
            theorem Polynomial.degree_cubic_lt {R : Type u} {a : R} {b : R} {c : R} {d : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X ^ 3 + Polynomial.C b * Polynomial.X ^ 2 + Polynomial.C c * Polynomial.X + Polynomial.C d).degree < 4
            theorem Polynomial.degree_quadratic_lt_degree_C_mul_X_cb {R : Type u} {a : R} {b : R} {c : R} {d : R} [Semiring R] (ha : a 0) :
            (Polynomial.C b * Polynomial.X ^ 2 + Polynomial.C c * Polynomial.X + Polynomial.C d).degree < (Polynomial.C a * Polynomial.X ^ 3).degree
            @[simp]
            theorem Polynomial.degree_cubic {R : Type u} {a : R} {b : R} {c : R} {d : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X ^ 3 + Polynomial.C b * Polynomial.X ^ 2 + Polynomial.C c * Polynomial.X + Polynomial.C d).degree = 3
            theorem Polynomial.natDegree_cubic_le {R : Type u} {a : R} {b : R} {c : R} {d : R} [Semiring R] :
            (Polynomial.C a * Polynomial.X ^ 3 + Polynomial.C b * Polynomial.X ^ 2 + Polynomial.C c * Polynomial.X + Polynomial.C d).natDegree 3
            theorem Polynomial.natDegree_cubic {R : Type u} {a : R} {b : R} {c : R} {d : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X ^ 3 + Polynomial.C b * Polynomial.X ^ 2 + Polynomial.C c * Polynomial.X + Polynomial.C d).natDegree = 3
            @[simp]
            theorem Polynomial.leadingCoeff_cubic {R : Type u} {a : R} {b : R} {c : R} {d : R} [Semiring R] (ha : a 0) :
            (Polynomial.C a * Polynomial.X ^ 3 + Polynomial.C b * Polynomial.X ^ 2 + Polynomial.C c * Polynomial.X + Polynomial.C d).leadingCoeff = a
            @[simp]
            theorem Polynomial.degree_X_pow {R : Type u} [Semiring R] [Nontrivial R] (n : ) :
            (Polynomial.X ^ n).degree = n
            @[simp]
            theorem Polynomial.natDegree_X_pow {R : Type u} [Semiring R] [Nontrivial R] (n : ) :
            (Polynomial.X ^ n).natDegree = n
            @[simp]
            theorem Polynomial.natDegree_mul_X {R : Type u} [Semiring R] [Nontrivial R] {p : Polynomial R} (hp : p 0) :
            (p * Polynomial.X).natDegree = p.natDegree + 1
            @[simp]
            theorem Polynomial.natDegree_X_mul {R : Type u} [Semiring R] [Nontrivial R] {p : Polynomial R} (hp : p 0) :
            (Polynomial.X * p).natDegree = p.natDegree + 1
            @[simp]
            theorem Polynomial.natDegree_mul_X_pow {R : Type u} [Semiring R] [Nontrivial R] {p : Polynomial R} (n : ) (hp : p 0) :
            (p * Polynomial.X ^ n).natDegree = p.natDegree + n
            @[simp]
            theorem Polynomial.natDegree_X_pow_mul {R : Type u} [Semiring R] [Nontrivial R] {p : Polynomial R} (n : ) (hp : p 0) :
            (Polynomial.X ^ n * p).natDegree = p.natDegree + n
            theorem Polynomial.natDegree_X_pow_le {R : Type u_1} [Semiring R] (n : ) :
            (Polynomial.X ^ n).natDegree n
            theorem Polynomial.not_isUnit_X {R : Type u} [Semiring R] [Nontrivial R] :
            ¬IsUnit Polynomial.X
            @[simp]
            theorem Polynomial.degree_mul_X {R : Type u} [Semiring R] [Nontrivial R] {p : Polynomial R} :
            (p * Polynomial.X).degree = p.degree + 1
            @[simp]
            theorem Polynomial.degree_mul_X_pow {R : Type u} [Semiring R] [Nontrivial R] {p : Polynomial R} (n : ) :
            (p * Polynomial.X ^ n).degree = p.degree + n
            theorem Polynomial.degree_sub_C {R : Type u} {a : R} [Ring R] {p : Polynomial R} (hp : 0 < p.degree) :
            (p - Polynomial.C a).degree = p.degree
            @[simp]
            theorem Polynomial.natDegree_sub_C {R : Type u} [Ring R] {p : Polynomial R} {a : R} :
            (p - Polynomial.C a).natDegree = p.natDegree
            theorem Polynomial.degree_sub_le {R : Type u} [Ring R] (p : Polynomial R) (q : Polynomial R) :
            (p - q).degree p.degree q.degree
            theorem Polynomial.degree_sub_le_of_le {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} {a : WithBot } {b : WithBot } (hp : p.degree a) (hq : q.degree b) :
            (p - q).degree a b
            theorem Polynomial.leadingCoeff_sub_of_degree_lt {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} (h : q.degree < p.degree) :
            (p - q).leadingCoeff = p.leadingCoeff
            theorem Polynomial.leadingCoeff_sub_of_degree_lt' {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} (h : p.degree < q.degree) :
            (p - q).leadingCoeff = -q.leadingCoeff
            theorem Polynomial.leadingCoeff_sub_of_degree_eq {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} (h : p.degree = q.degree) (hlc : p.leadingCoeff q.leadingCoeff) :
            (p - q).leadingCoeff = p.leadingCoeff - q.leadingCoeff
            theorem Polynomial.natDegree_sub_le {R : Type u} [Ring R] (p : Polynomial R) (q : Polynomial R) :
            (p - q).natDegree p.natDegree q.natDegree
            theorem Polynomial.natDegree_sub_le_of_le {R : Type u} {n : } {m : } [Ring R] {p : Polynomial R} {q : Polynomial R} (hp : p.natDegree m) (hq : q.natDegree n) :
            (p - q).natDegree m n
            theorem Polynomial.degree_sub_lt {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} (hd : p.degree = q.degree) (hp0 : p 0) (hlc : p.leadingCoeff = q.leadingCoeff) :
            (p - q).degree < p.degree
            theorem Polynomial.degree_X_sub_C_le {R : Type u} [Ring R] (r : R) :
            (Polynomial.X - Polynomial.C r).degree 1
            theorem Polynomial.natDegree_X_sub_C_le {R : Type u} [Ring R] (r : R) :
            (Polynomial.X - Polynomial.C r).natDegree 1
            theorem Polynomial.degree_sub_eq_left_of_degree_lt {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} (h : q.degree < p.degree) :
            (p - q).degree = p.degree
            theorem Polynomial.degree_sub_eq_right_of_degree_lt {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} (h : p.degree < q.degree) :
            (p - q).degree = q.degree
            theorem Polynomial.natDegree_sub_eq_left_of_natDegree_lt {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} (h : q.natDegree < p.natDegree) :
            (p - q).natDegree = p.natDegree
            theorem Polynomial.natDegree_sub_eq_right_of_natDegree_lt {R : Type u} [Ring R] {p : Polynomial R} {q : Polynomial R} (h : p.natDegree < q.natDegree) :
            (p - q).natDegree = q.natDegree
            @[simp]
            theorem Polynomial.degree_X_add_C {R : Type u} [Nontrivial R] [Semiring R] (a : R) :
            (Polynomial.X + Polynomial.C a).degree = 1
            theorem Polynomial.natDegree_X_add_C {R : Type u} [Nontrivial R] [Semiring R] (x : R) :
            (Polynomial.X + Polynomial.C x).natDegree = 1
            @[simp]
            theorem Polynomial.nextCoeff_X_add_C {S : Type v} [Semiring S] (c : S) :
            (Polynomial.X + Polynomial.C c).nextCoeff = c
            theorem Polynomial.degree_X_pow_add_C {R : Type u} [Nontrivial R] [Semiring R] {n : } (hn : 0 < n) (a : R) :
            (Polynomial.X ^ n + Polynomial.C a).degree = n
            theorem Polynomial.X_pow_add_C_ne_zero {R : Type u} [Nontrivial R] [Semiring R] {n : } (hn : 0 < n) (a : R) :
            Polynomial.X ^ n + Polynomial.C a 0
            theorem Polynomial.X_add_C_ne_zero {R : Type u} [Nontrivial R] [Semiring R] (r : R) :
            Polynomial.X + Polynomial.C r 0
            theorem Polynomial.zero_nmem_multiset_map_X_add_C {R : Type u} [Nontrivial R] [Semiring R] {α : Type u_1} (m : Multiset α) (f : αR) :
            0Multiset.map (fun (a : α) => Polynomial.X + Polynomial.C (f a)) m
            theorem Polynomial.natDegree_X_pow_add_C {R : Type u} [Nontrivial R] [Semiring R] {n : } {r : R} :
            (Polynomial.X ^ n + Polynomial.C r).natDegree = n
            theorem Polynomial.X_pow_add_C_ne_one {R : Type u} [Nontrivial R] [Semiring R] {n : } (hn : 0 < n) (a : R) :
            Polynomial.X ^ n + Polynomial.C a 1
            theorem Polynomial.X_add_C_ne_one {R : Type u} [Nontrivial R] [Semiring R] (r : R) :
            Polynomial.X + Polynomial.C r 1
            @[simp]
            theorem Polynomial.leadingCoeff_X_pow_add_C {R : Type u} [Semiring R] {n : } (hn : 0 < n) {r : R} :
            (Polynomial.X ^ n + Polynomial.C r).leadingCoeff = 1
            @[simp]
            theorem Polynomial.leadingCoeff_X_add_C {S : Type v} [Semiring S] (r : S) :
            (Polynomial.X + Polynomial.C r).leadingCoeff = 1
            @[simp]
            theorem Polynomial.leadingCoeff_X_pow_add_one {R : Type u} [Semiring R] {n : } (hn : 0 < n) :
            (Polynomial.X ^ n + 1).leadingCoeff = 1
            @[simp]
            theorem Polynomial.leadingCoeff_pow_X_add_C {R : Type u} [Semiring R] (r : R) (i : ) :
            ((Polynomial.X + Polynomial.C r) ^ i).leadingCoeff = 1
            @[simp]
            theorem Polynomial.degree_mul {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} {q : Polynomial R} :
            (p * q).degree = p.degree + q.degree

            degree as a monoid homomorphism between R[X] and Multiplicative (WithBot ℕ). This is useful to prove results about multiplication and degree.

            Equations
            • Polynomial.degreeMonoidHom = { toFun := Polynomial.degree, map_one' := , map_mul' := }
            Instances For
              @[simp]
              theorem Polynomial.degree_pow {R : Type u} [Semiring R] [NoZeroDivisors R] [Nontrivial R] (p : Polynomial R) (n : ) :
              (p ^ n).degree = n p.degree
              @[simp]
              theorem Polynomial.leadingCoeff_mul {R : Type u} [Semiring R] [NoZeroDivisors R] (p : Polynomial R) (q : Polynomial R) :
              (p * q).leadingCoeff = p.leadingCoeff * q.leadingCoeff

              Polynomial.leadingCoeff bundled as a MonoidHom when R has NoZeroDivisors, and thus leadingCoeff is multiplicative

              Equations
              • Polynomial.leadingCoeffHom = { toFun := Polynomial.leadingCoeff, map_one' := , map_mul' := }
              Instances For
                @[simp]
                theorem Polynomial.leadingCoeffHom_apply {R : Type u} [Semiring R] [NoZeroDivisors R] (p : Polynomial R) :
                Polynomial.leadingCoeffHom p = p.leadingCoeff
                @[simp]
                theorem Polynomial.leadingCoeff_pow {R : Type u} [Semiring R] [NoZeroDivisors R] (p : Polynomial R) (n : ) :
                (p ^ n).leadingCoeff = p.leadingCoeff ^ n
                theorem Polynomial.leadingCoeff_dvd_leadingCoeff {R : Type u} [Semiring R] [NoZeroDivisors R] {a : Polynomial R} {p : Polynomial R} (hap : a p) :
                a.leadingCoeff p.leadingCoeff
                theorem Polynomial.natDegree_mul {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} {q : Polynomial R} (hp : p 0) (hq : q 0) :
                (p * q).natDegree = p.natDegree + q.natDegree
                @[simp]
                theorem Polynomial.natDegree_pow {R : Type u} [Semiring R] [NoZeroDivisors R] (p : Polynomial R) (n : ) :
                (p ^ n).natDegree = n * p.natDegree
                theorem Polynomial.degree_le_mul_left {R : Type u} [Semiring R] [NoZeroDivisors R] {q : Polynomial R} (p : Polynomial R) (hq : q 0) :
                p.degree (p * q).degree
                theorem Polynomial.natDegree_le_of_dvd {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} {q : Polynomial R} (h1 : p q) (h2 : q 0) :
                p.natDegree q.natDegree
                theorem Polynomial.degree_le_of_dvd {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} {q : Polynomial R} (h1 : p q) (h2 : q 0) :
                p.degree q.degree
                theorem Polynomial.eq_zero_of_dvd_of_degree_lt {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} {q : Polynomial R} (h₁ : p q) (h₂ : q.degree < p.degree) :
                q = 0
                theorem Polynomial.eq_zero_of_dvd_of_natDegree_lt {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} {q : Polynomial R} (h₁ : p q) (h₂ : q.natDegree < p.natDegree) :
                q = 0
                theorem Polynomial.not_dvd_of_degree_lt {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} {q : Polynomial R} (h0 : q 0) (hl : q.degree < p.degree) :
                ¬p q
                theorem Polynomial.not_dvd_of_natDegree_lt {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} {q : Polynomial R} (h0 : q 0) (hl : q.natDegree < p.natDegree) :
                ¬p q
                theorem Polynomial.natDegree_sub_eq_of_prod_eq {R : Type u} [Semiring R] [NoZeroDivisors R] {p₁ : Polynomial R} {p₂ : Polynomial R} {q₁ : Polynomial R} {q₂ : Polynomial R} (hp₁ : p₁ 0) (hq₁ : q₁ 0) (hp₂ : p₂ 0) (hq₂ : q₂ 0) (h_eq : p₁ * q₂ = p₂ * q₁) :
                p₁.natDegree - q₁.natDegree = p₂.natDegree - q₂.natDegree

                This lemma is useful for working with the intDegree of a rational function.

                theorem Polynomial.natDegree_eq_zero_of_isUnit {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} (h : IsUnit p) :
                p.natDegree = 0
                theorem Polynomial.degree_eq_zero_of_isUnit {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} [Nontrivial R] (h : IsUnit p) :
                p.degree = 0
                @[simp]
                theorem Polynomial.degree_coe_units {R : Type u} [Semiring R] [NoZeroDivisors R] [Nontrivial R] (u : (Polynomial R)ˣ) :
                (↑u).degree = 0
                theorem Polynomial.isUnit_iff {R : Type u} [Semiring R] [NoZeroDivisors R] {p : Polynomial R} :
                IsUnit p ∃ (r : R), IsUnit r Polynomial.C r = p

                Characterization of a unit of a polynomial ring over an integral domain R. See Polynomial.isUnit_iff_coeff_isUnit_isNilpotent when R is a commutative ring.

                theorem Polynomial.not_isUnit_of_degree_pos {R : Type u} [Semiring R] [NoZeroDivisors R] (p : Polynomial R) (hpl : 0 < p.degree) :
                theorem Polynomial.not_isUnit_of_natDegree_pos {R : Type u} [Semiring R] [NoZeroDivisors R] (p : Polynomial R) (hpl : 0 < p.natDegree) :
                @[simp]
                theorem Polynomial.natDegree_coe_units {R : Type u} [Semiring R] [NoZeroDivisors R] (u : (Polynomial R)ˣ) :
                (↑u).natDegree = 0
                theorem Polynomial.Monic.C_dvd_iff_isUnit {R : Type u} [CommSemiring R] {p : Polynomial R} (hp : p.Monic) {a : R} :
                Polynomial.C a p IsUnit a
                theorem Polynomial.Monic.natDegree_pos {R : Type u} [CommSemiring R] {p : Polynomial R} (hp : p.Monic) :
                0 < p.natDegree p 1
                theorem Polynomial.Monic.degree_pos {R : Type u} [CommSemiring R] {p : Polynomial R} (hp : p.Monic) :
                0 < p.degree p 1
                theorem Polynomial.Monic.degree_pos_of_not_isUnit {R : Type u} [CommSemiring R] {p : Polynomial R} (hp : p.Monic) (hu : ¬IsUnit p) :
                0 < p.degree
                theorem Polynomial.Monic.natDegree_pos_of_not_isUnit {R : Type u} [CommSemiring R] {p : Polynomial R} (hp : p.Monic) (hu : ¬IsUnit p) :
                0 < p.natDegree
                theorem Polynomial.degree_pos_of_not_isUnit_of_dvd_monic {R : Type u} [CommSemiring R] {a : Polynomial R} {p : Polynomial R} (hp : p.Monic) (ha : ¬IsUnit a) (hap : a p) :
                0 < a.degree
                theorem Polynomial.natDegree_pos_of_not_isUnit_of_dvd_monic {R : Type u} [CommSemiring R] {a : Polynomial R} {p : Polynomial R} (hp : p.Monic) (ha : ¬IsUnit a) (hap : a p) :
                0 < a.natDegree
                @[simp]
                theorem Polynomial.leadingCoeff_X_pow_sub_C {R : Type u} [Ring R] {n : } (hn : 0 < n) {r : R} :
                (Polynomial.X ^ n - Polynomial.C r).leadingCoeff = 1
                @[simp]
                theorem Polynomial.leadingCoeff_X_pow_sub_one {R : Type u} [Ring R] {n : } (hn : 0 < n) :
                (Polynomial.X ^ n - 1).leadingCoeff = 1
                @[simp]
                theorem Polynomial.degree_X_sub_C {R : Type u} [Ring R] [Nontrivial R] (a : R) :
                (Polynomial.X - Polynomial.C a).degree = 1
                theorem Polynomial.natDegree_X_sub_C {R : Type u} [Ring R] [Nontrivial R] (x : R) :
                (Polynomial.X - Polynomial.C x).natDegree = 1
                @[simp]
                theorem Polynomial.nextCoeff_X_sub_C {S : Type v} [Ring S] (c : S) :
                (Polynomial.X - Polynomial.C c).nextCoeff = -c
                theorem Polynomial.degree_X_pow_sub_C {R : Type u} [Ring R] [Nontrivial R] {n : } (hn : 0 < n) (a : R) :
                (Polynomial.X ^ n - Polynomial.C a).degree = n
                theorem Polynomial.X_pow_sub_C_ne_zero {R : Type u} [Ring R] [Nontrivial R] {n : } (hn : 0 < n) (a : R) :
                Polynomial.X ^ n - Polynomial.C a 0
                theorem Polynomial.X_sub_C_ne_zero {R : Type u} [Ring R] [Nontrivial R] (r : R) :
                Polynomial.X - Polynomial.C r 0
                theorem Polynomial.zero_nmem_multiset_map_X_sub_C {R : Type u} [Ring R] [Nontrivial R] {α : Type u_1} (m : Multiset α) (f : αR) :
                0Multiset.map (fun (a : α) => Polynomial.X - Polynomial.C (f a)) m
                theorem Polynomial.natDegree_X_pow_sub_C {R : Type u} [Ring R] [Nontrivial R] {n : } {r : R} :
                (Polynomial.X ^ n - Polynomial.C r).natDegree = n
                @[simp]
                theorem Polynomial.leadingCoeff_X_sub_C {S : Type v} [Ring S] (r : S) :
                (Polynomial.X - Polynomial.C r).leadingCoeff = 1
                Equations
                • =