Documentation

Mathlib.Algebra.SMulWithZero

Introduce SMulWithZero #

In analogy with the usual monoid action on a Type M, we introduce an action of a MonoidWithZero on a Type with 0.

In particular, for Types R and M, both containing 0, we define SMulWithZero R M to be the typeclass where the products r • 0 and 0 • m vanish for all r : R and all m : M.

Moreover, in the case in which R is a MonoidWithZero, we introduce the typeclass MulActionWithZero R M, mimicking group actions and having an absorbing 0 in R. Thus, the action is required to be compatible with

We also add an instance:

Main declarations #

@[simp]
theorem zero_smul (R : Type u_1) {M : Type u_3} [Zero R] [Zero M] [SMulWithZero R M] (m : M) :
0 m = 0
theorem smul_eq_zero_of_left {R : Type u_1} {M : Type u_3} [Zero R] [Zero M] [SMulWithZero R M] {a : R} (h : a = 0) (b : M) :
a b = 0
theorem left_ne_zero_of_smul {R : Type u_1} {M : Type u_3} [Zero R] [Zero M] [SMulWithZero R M] {a : R} {b : M} :
a b 0a 0
@[reducible, inline]
abbrev Function.Injective.smulWithZero {R : Type u_1} {M : Type u_3} {M' : Type u_4} [Zero R] [Zero M] [SMulWithZero R M] [Zero M'] [SMul R M'] (f : ZeroHom M' M) (hf : Injective f) (smul : ∀ (a : R) (b : M'), f (a b) = a f b) :

Pullback a SMulWithZero structure along an injective zero-preserving homomorphism. See note [reducible non-instances].

Equations
@[reducible, inline]
abbrev Function.Surjective.smulWithZero {R : Type u_1} {M : Type u_3} {M' : Type u_4} [Zero R] [Zero M] [SMulWithZero R M] [Zero M'] [SMul R M'] (f : ZeroHom M M') (hf : Surjective f) (smul : ∀ (a : R) (b : M), f (a b) = a f b) :

Pushforward a SMulWithZero structure along a surjective zero-preserving homomorphism. See note [reducible non-instances].

Equations
def SMulWithZero.compHom {R : Type u_1} {R' : Type u_2} (M : Type u_3) [Zero R] [Zero M] [SMulWithZero R M] [Zero R'] (f : ZeroHom R' R) :

Compose a SMulWithZero with a ZeroHom, with action f r' • m

Equations
@[instance 100]
instance MulActionWithZero.toSMulWithZero (R : Type u_5) (M : Type u_6) {x✝ : MonoidWithZero R} {x✝¹ : Zero M} [m : MulActionWithZero R M] :
Equations
theorem ite_zero_smul {R : Type u_1} {M : Type u_3} [MonoidWithZero R] [Zero M] [MulActionWithZero R M] (p : Prop) [Decidable p] (a : R) (b : M) :
(if p then a else 0) b = if p then a b else 0
theorem boole_smul {R : Type u_1} {M : Type u_3} [MonoidWithZero R] [Zero M] [MulActionWithZero R M] (p : Prop) [Decidable p] (a : M) :
(if p then 1 else 0) a = if p then a else 0
theorem Pi.single_apply_smul {R : Type u_1} {M : Type u_3} [MonoidWithZero R] [Zero M] [MulActionWithZero R M] {ι : Type u_5} [DecidableEq ι] (x : M) (i j : ι) :
single i 1 j x = single i x j
@[reducible, inline]
abbrev Function.Injective.mulActionWithZero {R : Type u_1} {M : Type u_3} {M' : Type u_4} [MonoidWithZero R] [Zero M] [MulActionWithZero R M] [Zero M'] [SMul R M'] (f : ZeroHom M' M) (hf : Injective f) (smul : ∀ (a : R) (b : M'), f (a b) = a f b) :

Pullback a MulActionWithZero structure along an injective zero-preserving homomorphism. See note [reducible non-instances].

Equations
@[reducible, inline]
abbrev Function.Surjective.mulActionWithZero {R : Type u_1} {M : Type u_3} {M' : Type u_4} [MonoidWithZero R] [Zero M] [MulActionWithZero R M] [Zero M'] [SMul R M'] (f : ZeroHom M M') (hf : Surjective f) (smul : ∀ (a : R) (b : M), f (a b) = a f b) :

Pushforward a MulActionWithZero structure along a surjective zero-preserving homomorphism. See note [reducible non-instances].

Equations
def MulActionWithZero.compHom {R : Type u_1} {R' : Type u_2} (M : Type u_3) [MonoidWithZero R] [MonoidWithZero R'] [Zero M] [MulActionWithZero R M] (f : R' →*₀ R) :

Compose a MulActionWithZero with a MonoidWithZeroHom, with action f r' • m

Equations
theorem smul_inv₀ {α : Type u_5} {β : Type u_6} [GroupWithZero α] [GroupWithZero β] [MulActionWithZero α β] [SMulCommClass α β β] [IsScalarTower α β β] (c : α) (x : β) :