Documentation

Mathlib.Analysis.Calculus.ContDiff.Analytic

Analytic functions are C^∞. #

theorem AnalyticOnNhd.contDiffOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {s : Set E} {n : WithTop ℕ∞} [CompleteSpace F] (h : AnalyticOnNhd 𝕜 f s) :
ContDiffOn 𝕜 n f s

An analytic function is infinitely differentiable.

theorem AnalyticOnNhd.contDiff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {n : WithTop ℕ∞} [CompleteSpace F] (h : AnalyticOnNhd 𝕜 f Set.univ) :
ContDiff 𝕜 n f

An analytic function on the whole space is infinitely differentiable there.

theorem AnalyticAt.contDiffAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {f : EF} {x : E} [CompleteSpace F] (h : AnalyticAt 𝕜 f x) {n : ℕ∞} :
ContDiffAt 𝕜 (↑n) f x
theorem AnalyticWithinAt.contDiffWithinAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [CompleteSpace F] {f : EF} {s : Set E} {x : E} (h : AnalyticWithinAt 𝕜 f s x) {n : ℕ∞} :
ContDiffWithinAt 𝕜 (↑n) f s x
theorem AnalyticOn.contDiffOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [CompleteSpace F] {f : EF} {s : Set E} (h : AnalyticOn 𝕜 f s) {n : ℕ∞} :
ContDiffOn 𝕜 (↑n) f s
@[deprecated AnalyticOn.contDiffOn]
theorem AnalyticWithinOn.contDiffOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [CompleteSpace F] {f : EF} {s : Set E} (h : AnalyticOn 𝕜 f s) {n : ℕ∞} :
ContDiffOn 𝕜 (↑n) f s

Alias of AnalyticOn.contDiffOn.