Documentation

Mathlib.Data.Complex.Norm

Norm on the complex numbers #

Equations
@[deprecated Complex.norm_mul_self_eq_normSq (since := "2025-02-16")]

Alias of Complex.norm_mul_self_eq_normSq.

@[deprecated Complex.abs_re_le_norm (since := "2025-02-16")]

Alias of Complex.abs_re_le_norm.

@[deprecated Complex.re_le_norm (since := "2025-02-16")]
theorem Complex.re_le_abs (z : ) :

Alias of Complex.re_le_norm.

Equations
  • One or more equations did not get rendered due to their size.
@[reducible, inline, deprecated "use the norm instead" (since := "2025-02-16")]
noncomputable abbrev Complex.abs (z : ) :

The complex absolute value function, defined as the Complex norm.

Equations
@[deprecated Complex.norm_def (since := "2025-02-16")]
theorem Complex.abs_apply (z : ) :

Alias of Complex.norm_def.

@[simp]
theorem Complex.norm_mul (z w : ) :
@[simp]
theorem Complex.norm_div (z w : ) :
theorem Complex.norm_pow (z : ) (n : ) :
z ^ n = z ^ n
theorem Complex.norm_zpow (z : ) (n : ) :
z ^ n = z ^ n
theorem Complex.norm_prod {ι : Type u_1} (s : Finset ι) (f : ι) :
s.prod f = is, f i
@[deprecated Complex.norm_pow (since := "2025-02-16")]
theorem Complex.abs_pow (z : ) (n : ) :
z ^ n = z ^ n

Alias of Complex.norm_pow.

@[deprecated Complex.norm_zpow (since := "2025-02-16")]
theorem Complex.abs_zpow (z : ) (n : ) :
z ^ n = z ^ n

Alias of Complex.norm_zpow.

@[deprecated Complex.norm_prod (since := "2025-02-16")]
theorem Complex.abs_prod {ι : Type u_1} (s : Finset ι) (f : ι) :
s.prod f = is, f i

Alias of Complex.norm_prod.

@[deprecated Complex.norm_conj (since := "2025-02-16")]

Alias of Complex.norm_conj.

@[deprecated abs_norm (since := "2025-02-16")]
theorem Complex.abs_abs {E : Type u_5} [SeminormedAddGroup E] (z : E) :

Alias of abs_norm.

@[simp]
@[deprecated Complex.norm_I (since := "2025-02-16")]

Alias of Complex.norm_I.

@[simp]
theorem Complex.norm_real (r : ) :
theorem Complex.norm_of_nonneg {r : } (h : 0 r) :
r = r
@[deprecated Complex.norm_real (since := "2025-02-16")]
theorem Complex.abs_ofReal (r : ) :

Alias of Complex.norm_real.

@[deprecated Complex.norm_of_nonneg (since := "2025-02-16")]
theorem Complex.abs_of_nonneg {r : } (h : 0 r) :
r = r

Alias of Complex.norm_of_nonneg.

@[simp]
@[simp]
theorem Complex.norm_natCast (n : ) :
n = n
@[simp]
theorem Complex.nnnorm_natCast (n : ) :
n‖₊ = n
@[deprecated Complex.norm_natCast (since := "2025-02-16")]
theorem Complex.abs_natCast (n : ) :
n = n

Alias of Complex.norm_natCast.

@[deprecated Complex.norm_ofNat (since := "2025-02-16")]

Alias of Complex.norm_ofNat.

@[deprecated Complex.norm_two (since := "2025-02-16")]

Alias of Complex.norm_two.

@[simp]
theorem Complex.norm_intCast (n : ) :
n = |n|
theorem Complex.norm_int_of_nonneg {n : } (hn : 0 n) :
n = n
@[simp]
theorem Complex.norm_ratCast (q : ) :
q = |q|
@[simp]
theorem Complex.norm_nnratCast (q : ℚ≥0) :
q = q
@[simp]
@[simp]
@[deprecated Complex.norm_intCast (since := "2025-02-16")]
theorem Complex.abs_intCast (n : ) :
n = |n|

Alias of Complex.norm_intCast.

@[simp]
theorem Complex.sq_norm_sub_sq_re (z : ) :
z ^ 2 - z.re ^ 2 = z.im ^ 2
@[simp]
theorem Complex.sq_norm_sub_sq_im (z : ) :
z ^ 2 - z.im ^ 2 = z.re ^ 2
theorem Complex.norm_add_mul_I (x y : ) :
x + y * I = (x ^ 2 + y ^ 2)
@[deprecated Complex.normSq_eq_norm_sq (since := "2025-02-16")]

Alias of Complex.normSq_eq_norm_sq.

@[deprecated Complex.sq_norm (since := "2025-02-16")]
theorem Complex.sq_abs (z : ) :

Alias of Complex.sq_norm.

@[deprecated Complex.sq_norm_sub_sq_re (since := "2025-02-16")]
theorem Complex.sq_abs_sub_sq_re (z : ) :
z ^ 2 - z.re ^ 2 = z.im ^ 2

Alias of Complex.sq_norm_sub_sq_re.

@[deprecated Complex.sq_norm_sub_sq_im (since := "2025-02-16")]
theorem Complex.sq_abs_sub_sq_im (z : ) :
z ^ 2 - z.im ^ 2 = z.re ^ 2

Alias of Complex.sq_norm_sub_sq_im.

@[deprecated Complex.norm_add_mul_I (since := "2025-02-16")]
theorem Complex.abs_add_mul_I (x y : ) :
x + y * I = (x ^ 2 + y ^ 2)

Alias of Complex.norm_add_mul_I.

@[deprecated Complex.norm_eq_sqrt_sq_add_sq (since := "2025-02-16")]
theorem Complex.abs_eq_sqrt_sq_add_sq (z : ) :
z = (z.re ^ 2 + z.im ^ 2)

Alias of Complex.norm_eq_sqrt_sq_add_sq.

@[simp]
theorem Complex.range_norm :
(Set.range fun (x : ) => x) = Set.Ici 0
@[deprecated Complex.range_norm (since := "2025-02-16")]
theorem Complex.range_abs :
(Set.range fun (x : ) => x) = Set.Ici 0

Alias of Complex.range_norm.

@[simp]
@[simp]
@[simp]
theorem Complex.abs_re_eq_norm {z : } :
|z.re| = z z.im = 0
@[simp]
theorem Complex.abs_im_eq_norm {z : } :
|z.im| = z z.re = 0
@[deprecated Complex.norm_le_abs_re_add_abs_im (since := "2025-02-16")]

Alias of Complex.norm_le_abs_re_add_abs_im.

@[deprecated Complex.abs_im_le_norm (since := "2025-02-16")]

Alias of Complex.abs_im_le_norm.

@[deprecated Complex.im_le_norm (since := "2025-02-16")]
theorem Complex.im_le_abs (z : ) :

Alias of Complex.im_le_norm.

@[deprecated Complex.abs_re_lt_norm (since := "2025-02-16")]
theorem Complex.abs_re_lt_abs {z : } :

Alias of Complex.abs_re_lt_norm.

@[deprecated Complex.abs_im_lt_norm (since := "2025-02-16")]
theorem Complex.abs_im_lt_abs {z : } :

Alias of Complex.abs_im_lt_norm.

@[deprecated Complex.abs_re_eq_norm (since := "2025-02-16")]
theorem Complex.abs_re_eq_abs {z : } :
|z.re| = z z.im = 0

Alias of Complex.abs_re_eq_norm.

@[deprecated Complex.abs_im_eq_norm (since := "2025-02-16")]
theorem Complex.abs_im_eq_abs {z : } :
|z.im| = z z.re = 0

Alias of Complex.abs_im_eq_norm.

@[deprecated Complex.norm_le_sqrt_two_mul_max (since := "2025-02-16")]

Alias of Complex.norm_le_sqrt_two_mul_max.

@[deprecated Complex.abs_re_div_norm_le_one (since := "2025-02-16")]

Alias of Complex.abs_re_div_norm_le_one.

@[deprecated Complex.abs_im_div_norm_le_one (since := "2025-02-16")]

Alias of Complex.abs_im_div_norm_le_one.

theorem Complex.dist_eq (z w : ) :
dist z w = z - w
theorem Complex.dist_eq_re_im (z w : ) :
dist z w = ((z.re - w.re) ^ 2 + (z.im - w.im) ^ 2)
@[simp]
theorem Complex.dist_mk (x₁ y₁ x₂ y₂ : ) :
dist { re := x₁, im := y₁ } { re := x₂, im := y₂ } = ((x₁ - x₂) ^ 2 + (y₁ - y₂) ^ 2)
theorem Complex.dist_of_re_eq {z w : } (h : z.re = w.re) :
dist z w = dist z.im w.im
theorem Complex.nndist_of_re_eq {z w : } (h : z.re = w.re) :
nndist z w = nndist z.im w.im
theorem Complex.edist_of_re_eq {z w : } (h : z.re = w.re) :
edist z w = edist z.im w.im
theorem Complex.dist_of_im_eq {z w : } (h : z.im = w.im) :
dist z w = dist z.re w.re
theorem Complex.nndist_of_im_eq {z w : } (h : z.im = w.im) :
nndist z w = nndist z.re w.re
theorem Complex.edist_of_im_eq {z w : } (h : z.im = w.im) :
edist z w = edist z.re w.re

Cauchy sequences #

theorem Complex.isCauSeq_re (f : CauSeq fun (x : ) => x) :
IsCauSeq abs fun (n : ) => (f n).re
theorem Complex.isCauSeq_im (f : CauSeq fun (x : ) => x) :
IsCauSeq abs fun (n : ) => (f n).im
noncomputable def Complex.cauSeqRe (f : CauSeq fun (x : ) => x) :

The real part of a complex Cauchy sequence, as a real Cauchy sequence.

Equations
noncomputable def Complex.cauSeqIm (f : CauSeq fun (x : ) => x) :

The imaginary part of a complex Cauchy sequence, as a real Cauchy sequence.

Equations
theorem Complex.isCauSeq_norm {f : } (hf : IsCauSeq (fun (x : ) => x) f) :
IsCauSeq abs ((fun (x : ) => x) f)
noncomputable def Complex.limAux (f : CauSeq fun (x : ) => x) :

The limit of a Cauchy sequence of complex numbers.

Equations
theorem Complex.equiv_limAux (f : CauSeq fun (x : ) => x) :
f CauSeq.const (fun (x : ) => x) (limAux f)
theorem Complex.lim_eq_lim_im_add_lim_re (f : CauSeq fun (x : ) => x) :
f.lim = (cauSeqRe f).lim + (cauSeqIm f).lim * I
theorem Complex.lim_re (f : CauSeq fun (x : ) => x) :
theorem Complex.lim_im (f : CauSeq fun (x : ) => x) :
theorem Complex.isCauSeq_conj (f : CauSeq fun (x : ) => x) :
IsCauSeq (fun (x : ) => x) fun (n : ) => (starRingEnd ) (f n)
noncomputable def Complex.cauSeqConj (f : CauSeq fun (x : ) => x) :
CauSeq fun (x : ) => x

The complex conjugate of a complex Cauchy sequence, as a complex Cauchy sequence.

Equations
noncomputable def Complex.cauSeqNorm (f : CauSeq fun (x : ) => x) :

The norm of a complex Cauchy sequence, as a real Cauchy sequence.

Equations
theorem Complex.lim_norm (f : CauSeq fun (x : ) => x) :
@[deprecated Complex.isCauSeq_norm (since := "2025-02-16")]
theorem Complex.isCauSeq_abs {f : } (hf : IsCauSeq (fun (x : ) => x) f) :
IsCauSeq abs ((fun (x : ) => x) f)

Alias of Complex.isCauSeq_norm.

@[deprecated Complex.cauSeqNorm (since := "2025-02-16")]
def Complex.cauSeqAbs (f : CauSeq fun (x : ) => x) :

Alias of Complex.cauSeqNorm.


The norm of a complex Cauchy sequence, as a real Cauchy sequence.

Equations
@[deprecated Complex.lim_norm (since := "2025-02-16")]
theorem Complex.lim_abs (f : CauSeq fun (x : ) => x) :

Alias of Complex.lim_norm.

theorem Complex.ne_zero_of_re_pos {s : } (hs : 0 < s.re) :
s 0
theorem Complex.ne_zero_of_one_lt_re {s : } (hs : 1 < s.re) :
s 0
theorem Complex.re_neg_ne_zero_of_re_pos {s : } (hs : 0 < s.re) :
(-s).re 0
theorem Complex.re_neg_ne_zero_of_one_lt_re {s : } (hs : 1 < s.re) :
(-s).re 0