Documentation

Mathlib.Data.Multiset.Defs

Multisets #

Multisets are finite sets with duplicates allowed. They are implemented here as the quotient of lists by permutation. This gives them computational content.

This file contains the definition of Multiset and the basic predicates. Most operations have been split off into their own files. The goal is that we can define Finset with only importing Multiset.Defs.

Main definitions #

Notation (defined later) #

def Multiset.ofList {α : Type u_1} :
List αMultiset α

The quotient map from List α to Multiset α.

Equations
instance Multiset.instCoeList {α : Type u_1} :
Coe (List α) (Multiset α)
Equations
@[simp]
theorem Multiset.quot_mk_to_coe {α : Type u_1} (l : List α) :
l = l
@[simp]
theorem Multiset.quot_mk_to_coe' {α : Type u_1} (l : List α) :
Quot.mk (fun (x1 x2 : List α) => x1 x2) l = l
@[simp]
theorem Multiset.quot_mk_to_coe'' {α : Type u_1} (l : List α) :
Quot.mk (⇑(List.isSetoid α)) l = l
@[simp]
theorem Multiset.lift_coe {α : Type u_3} {β : Type u_4} (x : List α) (f : List αβ) (h : ∀ (a b : List α), a bf a = f b) :
Quotient.lift f h x = f x
@[simp]
theorem Multiset.coe_eq_coe {α : Type u_1} {l₁ l₂ : List α} :
l₁ = l₂ l₁.Perm l₂
Equations
def Multiset.Mem {α : Type u_1} (s : Multiset α) (a : α) :

a ∈ s means that a has nonzero multiplicity in s.

Equations
@[simp]
theorem Multiset.mem_coe {α : Type u_1} {a : α} {l : List α} :
a l a l
instance Multiset.decidableMem {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
Equations

Multiset.Subset #

def Multiset.Subset {α : Type u_1} (s t : Multiset α) :

s ⊆ t is the lift of the list subset relation. It means that any element with nonzero multiplicity in s has nonzero multiplicity in t, but it does not imply that the multiplicity of a in s is less or equal than in t; see s ≤ t for this relation.

Equations
Equations
instance Multiset.instIsNonstrictStrictOrder {α : Type u_1} :
IsNonstrictStrictOrder (Multiset α) (fun (x1 x2 : Multiset α) => x1 x2) fun (x1 x2 : Multiset α) => x1 x2
@[simp]
theorem Multiset.coe_subset {α : Type u_1} {l₁ l₂ : List α} :
l₁ l₂ l₁ l₂
@[simp]
theorem Multiset.Subset.refl {α : Type u_1} (s : Multiset α) :
s s
theorem Multiset.Subset.trans {α : Type u_1} {s t u : Multiset α} :
s tt us u
theorem Multiset.subset_iff {α : Type u_1} {s t : Multiset α} :
s t ∀ ⦃x : α⦄, x sx t
theorem Multiset.mem_of_subset {α : Type u_1} {s t : Multiset α} {a : α} (h : s t) :
a sa t

Partial order on Multisets #

def Multiset.Le {α : Type u_1} (s t : Multiset α) :

s ≤ t means that s is a sublist of t (up to permutation). Equivalently, s ≤ t means that count a s ≤ count a t for all a.

Equations
theorem Multiset.subset_of_le {α : Type u_1} {s t : Multiset α} :
s ts t
theorem Multiset.Le.subset {α : Type u_1} {s t : Multiset α} :
s ts t

Alias of Multiset.subset_of_le.

theorem Multiset.mem_of_le {α : Type u_1} {s t : Multiset α} {a : α} (h : s t) :
a sa t
theorem Multiset.not_mem_mono {α : Type u_1} {s t : Multiset α} {a : α} (h : s t) :
¬a t¬a s
@[simp]
theorem Multiset.coe_le {α : Type u_1} {l₁ l₂ : List α} :
l₁ l₂ l₁.Subperm l₂
theorem Multiset.leInductionOn {α : Type u_1} {C : Multiset αMultiset αProp} {s t : Multiset α} (h : s t) (H : ∀ {l₁ l₂ : List α}, l₁.Sublist l₂C l₁ l₂) :
C s t

Cardinality #

def Multiset.card {α : Type u_1} :
Multiset α

The cardinality of a multiset is the sum of the multiplicities of all its elements, or simply the length of the underlying list.

Equations
@[simp]
theorem Multiset.coe_card {α : Type u_1} (l : List α) :
(↑l).card = l.length
theorem Multiset.card_le_card {α : Type u_1} {s t : Multiset α} (h : s t) :
theorem Multiset.eq_of_le_of_card_le {α : Type u_1} {s t : Multiset α} (h : s t) :
t.card s.cards = t
theorem Multiset.card_lt_card {α : Type u_1} {s t : Multiset α} (h : s < t) :
s.card < t.card

Another way of expressing strongInductionOn: the (<) relation is well-founded.

@[simp]
theorem Multiset.coe_reverse {α : Type u_1} (l : List α) :
l.reverse = l

Map for partial functions #

def Multiset.pmap {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (s : Multiset α) :
(∀ (a : α), a sp a)Multiset β

Lift of the list pmap operation. Map a partial function f over a multiset s whose elements are all in the domain of f.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Multiset.coe_pmap {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (l : List α) (H : ∀ (a : α), a lp a) :
pmap f (↑l) H = (List.pmap f l H)
theorem Multiset.pmap_congr {α : Type u_1} {β : Type v} {p q : αProp} {f : (a : α) → p aβ} {g : (a : α) → q aβ} (s : Multiset α) {H₁ : ∀ (a : α), a sp a} {H₂ : ∀ (a : α), a sq a} :
(∀ (a : α), a s∀ (h₁ : p a) (h₂ : q a), f a h₁ = g a h₂)pmap f s H₁ = pmap g s H₂
@[simp]
theorem Multiset.mem_pmap {α : Type u_1} {β : Type v} {p : αProp} {f : (a : α) → p aβ} {s : Multiset α} {H : ∀ (a : α), a sp a} {b : β} :
b pmap f s H (a : α), (h : a s), f a = b
@[simp]
theorem Multiset.card_pmap {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (s : Multiset α) (H : ∀ (a : α), a sp a) :
(pmap f s H).card = s.card
def Multiset.attach {α : Type u_1} (s : Multiset α) :
Multiset { x : α // x s }

"Attach" a proof that a ∈ s to each element a in s to produce a multiset on {x // x ∈ s}.

Equations
@[simp]
theorem Multiset.coe_attach {α : Type u_1} (l : List α) :
(↑l).attach = l.attach
@[simp]
theorem Multiset.mem_attach {α : Type u_1} (s : Multiset α) (x : { x : α // x s }) :
@[simp]
theorem Multiset.card_attach {α : Type u_1} {m : Multiset α} :
def Multiset.decidableForallMultiset {α : Type u_1} {m : Multiset α} {p : αProp} [(a : α) → Decidable (p a)] :
Decidable (∀ (a : α), a mp a)

If p is a decidable predicate, so is the predicate that all elements of a multiset satisfy p.

Equations
instance Multiset.decidableDforallMultiset {α : Type u_1} {m : Multiset α} {p : (a : α) → a mProp} [_hp : (a : α) → (h : a m) → Decidable (p a h)] :
Decidable (∀ (a : α) (h : a m), p a h)
Equations
instance Multiset.decidableEqPiMultiset {α : Type u_1} {m : Multiset α} {β : αType u_3} [(a : α) → DecidableEq (β a)] :
DecidableEq ((a : α) → a mβ a)

decidable equality for functions whose domain is bounded by multisets

Equations
def Multiset.decidableExistsMultiset {α : Type u_1} {m : Multiset α} {p : αProp} [DecidablePred p] :
Decidable ( (x : α), x m p x)

If p is a decidable predicate, so is the existence of an element in a multiset satisfying p.

Equations
instance Multiset.decidableDexistsMultiset {α : Type u_1} {m : Multiset α} {p : (a : α) → a mProp} [_hp : (a : α) → (h : a m) → Decidable (p a h)] :
Decidable ( (a : α), (h : a m), p a h)
Equations
def Multiset.Pairwise {α : Type u_1} (r : ααProp) (m : Multiset α) :

Pairwise r m states that there exists a list of the elements s.t. r holds pairwise on this list.

Equations
theorem Multiset.pairwise_coe_iff {α : Type u_1} {r : ααProp} {l : List α} :
Pairwise r l (l' : List α), l.Perm l' List.Pairwise r l'
theorem Multiset.pairwise_coe_iff_pairwise {α : Type u_1} {r : ααProp} (hr : Symmetric r) {l : List α} :
def Multiset.Nodup {α : Type u_1} (s : Multiset α) :

Nodup s means that s has no duplicates, i.e. the multiplicity of any element is at most 1.

Equations
Instances For
@[simp]
theorem Multiset.coe_nodup {α : Type u_1} {l : List α} :
(↑l).Nodup l.Nodup
theorem Multiset.Nodup.ext {α : Type u_1} {s t : Multiset α} :
s.Nodupt.Nodup → (s = t ∀ (a : α), a s a t)
theorem Multiset.le_iff_subset {α : Type u_1} {s t : Multiset α} :
s.Nodup → (s t s t)
theorem Multiset.nodup_of_le {α : Type u_1} {s t : Multiset α} (h : s t) :
t.Nodups.Nodup
def Multiset.sizeOf {α : Type u_1} [SizeOf α] (s : Multiset α) :

Defines a size for a multiset by referring to the size of the underlying list.

This has to be defined before the definition of Finset, otherwise its automatically generated SizeOf instance will be wrong.

Equations
instance Multiset.instSizeOf {α : Type u_1} [SizeOf α] :
Equations