Definition and notation for positive natural numbers #
ℕ+
is the type of positive natural numbers. It is defined as a subtype,
and the VM representation of ℕ+
is the same as ℕ
because the proof
is not stored.
Instances For
- Denumerable.pnat
- Int.canLiftPNat
- Mathlib.Tactic.Ring.instCSLiftPNatNat
- Nat.canLiftPNat
- PNat.addLeftMono
- PNat.addLeftReflectLE
- PNat.addLeftReflectLT
- PNat.addLeftStrictMono
- PNat.encodable
- PNat.instInhabited
- PNat.instOrderBot
- PNat.instSub
- PNat.instWellFoundedLT
- PNat.instWellFoundedRelation
- coePNatNat
- instCountablePNat
- instOfNatPNatOfNeZeroNat
- instOnePNat
- instPNatAdd
- instPNatAddCommSemigroup
- instPNatAddLeftCancelSemigroup
- instPNatAddRightCancelSemigroup
- instPNatDistrib
- instPNatLinearOrder
- instPNatLinearOrderedCancelCommMonoid
- instPNatMul
- instReprPNat
Equations
- instPNatDecidableEq a b = a.instDecidableEq b
ℕ+
is the type of positive natural numbers. It is defined as a subtype,
and the VM representation of ℕ+
is the same as ℕ
because the proof
is not stored.
Equations
- «termℕ+» = Lean.ParserDescr.node `«termℕ+» 1024 (Lean.ParserDescr.symbol "ℕ+")
The underlying natural number