Documentation

Mathlib.MeasureTheory.Function.L1Space.AEEqFun

space #

In this file we establish an API between Integrable and the space of equivalence classes of integrable functions, already defined as a special case of L^p spaces for p = 1.

Notation #

Tags #

function space, l1

def MeasureTheory.AEEqFun.Integrable {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : α →ₘ[μ] β) :

A class of almost everywhere equal functions is Integrable if its function representative is integrable.

Equations
theorem MeasureTheory.AEEqFun.integrable_mk {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f : αβ} (hf : AEStronglyMeasurable f μ) :
theorem MeasureTheory.AEEqFun.Integrable.neg {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f : α →ₘ[μ] β} :
theorem MeasureTheory.AEEqFun.integrable_iff_mem_L1 {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f : α →ₘ[μ] β} :
f.Integrable f Lp β 1 μ
theorem MeasureTheory.AEEqFun.Integrable.add {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f g : α →ₘ[μ] β} :
f.Integrableg.Integrable(f + g).Integrable
theorem MeasureTheory.AEEqFun.Integrable.sub {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f g : α →ₘ[μ] β} (hf : f.Integrable) (hg : g.Integrable) :
theorem MeasureTheory.AEEqFun.Integrable.smul {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {𝕜 : Type u_3} [NormedRing 𝕜] [Module 𝕜 β] [IsBoundedSMul 𝕜 β] {c : 𝕜} {f : α →ₘ[μ] β} :
theorem MeasureTheory.L1.integrable_coeFn {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : (Lp β 1 μ)) :
Integrable (↑f) μ
theorem MeasureTheory.L1.hasFiniteIntegral_coeFn {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : (Lp β 1 μ)) :
HasFiniteIntegral (↑f) μ
theorem MeasureTheory.L1.stronglyMeasurable_coeFn {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : (Lp β 1 μ)) :
theorem MeasureTheory.L1.measurable_coeFn {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] [MeasurableSpace β] [BorelSpace β] (f : (Lp β 1 μ)) :
Measurable f
theorem MeasureTheory.L1.aestronglyMeasurable_coeFn {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : (Lp β 1 μ)) :
theorem MeasureTheory.L1.aemeasurable_coeFn {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] [MeasurableSpace β] [BorelSpace β] (f : (Lp β 1 μ)) :
AEMeasurable (↑f) μ
theorem MeasureTheory.L1.edist_def {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f g : (Lp β 1 μ)) :
edist f g = ∫⁻ (a : α), edist (f a) (g a) μ
theorem MeasureTheory.L1.dist_def {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f g : (Lp β 1 μ)) :
dist f g = (∫⁻ (a : α), edist (f a) (g a) μ).toReal
theorem MeasureTheory.L1.norm_def {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : (Lp β 1 μ)) :
f = (∫⁻ (a : α), f a‖ₑ μ).toReal
theorem MeasureTheory.L1.norm_sub_eq_lintegral {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f g : (Lp β 1 μ)) :
f - g = (∫⁻ (x : α), f x - g x‖ₑ μ).toReal

Computing the norm of a difference between two L¹-functions. Note that this is not a special case of norm_def since (f - g) x and f x - g x are not equal (but only a.e.-equal).

theorem MeasureTheory.L1.ofReal_norm_eq_lintegral {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : (Lp β 1 μ)) :
theorem MeasureTheory.L1.ofReal_norm_sub_eq_lintegral {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f g : (Lp β 1 μ)) :
ENNReal.ofReal f - g = ∫⁻ (x : α), f x - g x‖ₑ μ

Computing the norm of a difference between two L¹-functions. Note that this is not a special case of ofReal_norm_eq_lintegral since (f - g) x and f x - g x are not equal (but only a.e.-equal).

def MeasureTheory.Integrable.toL1 {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : αβ) (hf : Integrable f μ) :
(Lp β 1 μ)

Construct the equivalence class [f] of an integrable function f, as a member of the space Lp β 1 μ.

Equations
@[simp]
theorem MeasureTheory.Integrable.toL1_coeFn {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : (Lp β 1 μ)) (hf : Integrable (↑f) μ) :
toL1 (↑f) hf = f
theorem MeasureTheory.Integrable.coeFn_toL1 {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f : αβ} (hf : Integrable f μ) :
(toL1 f hf) =ᶠ[ae μ] f
@[simp]
theorem MeasureTheory.Integrable.toL1_zero {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (h : Integrable 0 μ) :
toL1 0 h = 0
@[simp]
theorem MeasureTheory.Integrable.toL1_eq_mk {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : αβ) (hf : Integrable f μ) :
(toL1 f hf) = AEEqFun.mk f
@[simp]
theorem MeasureTheory.Integrable.toL1_eq_toL1_iff {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f g : αβ) (hf : Integrable f μ) (hg : Integrable g μ) :
toL1 f hf = toL1 g hg f =ᶠ[ae μ] g
theorem MeasureTheory.Integrable.toL1_add {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f g : αβ) (hf : Integrable f μ) (hg : Integrable g μ) :
toL1 (f + g) = toL1 f hf + toL1 g hg
theorem MeasureTheory.Integrable.toL1_neg {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : αβ) (hf : Integrable f μ) :
toL1 (-f) = -toL1 f hf
theorem MeasureTheory.Integrable.toL1_sub {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f g : αβ) (hf : Integrable f μ) (hg : Integrable g μ) :
toL1 (f - g) = toL1 f hf - toL1 g hg
theorem MeasureTheory.Integrable.norm_toL1 {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : αβ) (hf : Integrable f μ) :
toL1 f hf = (∫⁻ (a : α), edist (f a) 0 μ).toReal
theorem MeasureTheory.Integrable.enorm_toL1 {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f : αβ} (hf : Integrable f μ) :
toL1 f hf‖ₑ = ∫⁻ (a : α), f a‖ₑ μ
@[deprecated MeasureTheory.Integrable.enorm_toL1 (since := "2025-01-20")]
theorem MeasureTheory.Integrable.nnnorm_toL1 {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {f : αβ} (hf : Integrable f μ) :
toL1 f hf‖ₑ = ∫⁻ (a : α), f a‖ₑ μ

Alias of MeasureTheory.Integrable.enorm_toL1.

theorem MeasureTheory.Integrable.norm_toL1_eq_lintegral_norm {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : αβ) (hf : Integrable f μ) :
@[simp]
theorem MeasureTheory.Integrable.edist_toL1_toL1 {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f g : αβ) (hf : Integrable f μ) (hg : Integrable g μ) :
edist (toL1 f hf) (toL1 g hg) = ∫⁻ (a : α), edist (f a) (g a) μ
theorem MeasureTheory.Integrable.edist_toL1_zero {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] (f : αβ) (hf : Integrable f μ) :
edist (toL1 f hf) 0 = ∫⁻ (a : α), edist (f a) 0 μ
theorem MeasureTheory.Integrable.toL1_smul {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {𝕜 : Type u_3} [NormedRing 𝕜] [Module 𝕜 β] [IsBoundedSMul 𝕜 β] (f : αβ) (hf : Integrable f μ) (k : 𝕜) :
toL1 (fun (a : α) => k f a) = k toL1 f hf
theorem MeasureTheory.Integrable.toL1_smul' {α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup β] {𝕜 : Type u_3} [NormedRing 𝕜] [Module 𝕜 β] [IsBoundedSMul 𝕜 β] (f : αβ) (hf : Integrable f μ) (k : 𝕜) :
toL1 (k f) = k toL1 f hf