Documentation

Mathlib.MeasureTheory.Measure.Dirac

Dirac measure #

In this file we define the Dirac measure MeasureTheory.Measure.dirac a and prove some basic facts about it.

The dirac measure.

Equations
Instances For
    theorem MeasureTheory.Measure.le_dirac_apply {α : Type u_1} [MeasurableSpace α] {s : Set α} {a : α} :
    s.indicator 1 a (MeasureTheory.Measure.dirac a) s
    @[simp]
    theorem MeasureTheory.Measure.dirac_apply' {α : Type u_1} [MeasurableSpace α] {s : Set α} (a : α) (hs : MeasurableSet s) :
    (MeasureTheory.Measure.dirac a) s = s.indicator 1 a
    @[simp]
    theorem MeasureTheory.Measure.dirac_apply_of_mem {α : Type u_1} [MeasurableSpace α] {s : Set α} {a : α} (h : a s) :
    @[simp]
    theorem MeasureTheory.Measure.dirac_apply {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (a : α) (s : Set α) :
    (MeasureTheory.Measure.dirac a) s = s.indicator 1 a
    theorem MeasureTheory.Measure.map_const {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] (μ : MeasureTheory.Measure α) (c : β) :
    MeasureTheory.Measure.map (fun (x : α) => c) μ = μ Set.univ MeasureTheory.Measure.dirac c
    @[simp]
    theorem MeasureTheory.Measure.restrict_singleton {α : Type u_1} [MeasurableSpace α] (μ : MeasureTheory.Measure α) (a : α) :
    μ.restrict {a} = μ {a} MeasureTheory.Measure.dirac a

    If f is a map with countable codomain, then μ.map f is a sum of Dirac measures.

    @[simp]

    A measure on a countable type is a sum of Dirac measures.

    theorem MeasureTheory.Measure.tsum_indicator_apply_singleton {α : Type u_1} [MeasurableSpace α] [Countable α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) (s : Set α) (hs : MeasurableSet s) :
    ∑' (x : α), s.indicator (fun (x : α) => μ {x}) x = μ s

    Given that α is a countable, measurable space with all singleton sets measurable, write the measure of a set s as the sum of the measure of {x} for all x ∈ s.

    theorem MeasureTheory.mem_ae_dirac_iff {α : Type u_1} [MeasurableSpace α] {s : Set α} {a : α} (hs : MeasurableSet s) :
    theorem MeasureTheory.ae_dirac_iff {α : Type u_1} [MeasurableSpace α] {a : α} {p : αProp} (hp : MeasurableSet {x : α | p x}) :
    (∀ᵐ (x : α) ∂MeasureTheory.Measure.dirac a, p x) p a
    theorem MeasureTheory.ae_eq_dirac' {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSingletonClass β] {a : α} {f : αβ} (hf : Measurable f) :
    (MeasureTheory.Measure.dirac a).ae.EventuallyEq f (Function.const α (f a))
    theorem MeasureTheory.ae_eq_dirac {α : Type u_1} {δ : Type u_3} [MeasurableSpace α] [MeasurableSingletonClass α] {a : α} (f : αδ) :
    (MeasureTheory.Measure.dirac a).ae.EventuallyEq f (Function.const α (f a))

    Extra instances to short-circuit type class resolution

    theorem MeasureTheory.restrict_dirac' {α : Type u_1} [MeasurableSpace α] {s : Set α} {a : α} (hs : MeasurableSet s) [Decidable (a s)] :
    (MeasureTheory.Measure.dirac a).restrict s = if a s then MeasureTheory.Measure.dirac a else 0
    theorem MeasureTheory.restrict_dirac {α : Type u_1} [MeasurableSpace α] {s : Set α} {a : α} [MeasurableSingletonClass α] [Decidable (a s)] :
    (MeasureTheory.Measure.dirac a).restrict s = if a s then MeasureTheory.Measure.dirac a else 0