Documentation

Mathlib.Order.Filter.Ultrafilter.Defs

Ultrafilters #

An ultrafilter is a minimal (maximal in the set order) proper filter. In this file we define

instance instIsAtomicFilter {α : Type u} :

Filter α is an atomic type: for every filter there exists an ultrafilter that is less than or equal to this filter.

structure Ultrafilter (α : Type u_2) extends Filter α :
Type u_2

An ultrafilter is a minimal (maximal in the set order) proper filter.

Instances For
Equations
theorem Ultrafilter.unique {α : Type u} (f : Ultrafilter α) {g : Filter α} (h : g f) (hne : g.NeBot := by infer_instance) :
g = f
instance Ultrafilter.neBot {α : Type u} (f : Ultrafilter α) :
(↑f).NeBot
theorem Ultrafilter.isAtom {α : Type u} (f : Ultrafilter α) :
IsAtom f
@[simp]
theorem Ultrafilter.mem_coe {α : Type u} {f : Ultrafilter α} {s : Set α} :
s f s f
theorem Ultrafilter.eq_of_le {α : Type u} {f g : Ultrafilter α} (h : f g) :
f = g
@[simp]
theorem Ultrafilter.coe_le_coe {α : Type u} {f g : Ultrafilter α} :
f g f = g
@[simp]
theorem Ultrafilter.coe_inj {α : Type u} {f g : Ultrafilter α} :
f = g f = g
theorem Ultrafilter.ext {α : Type u} f g : Ultrafilter α (h : ∀ (s : Set α), s f s g) :
f = g
theorem Ultrafilter.le_of_inf_neBot {α : Type u} (f : Ultrafilter α) {g : Filter α} (hg : (f g).NeBot) :
f g
theorem Ultrafilter.le_of_inf_neBot' {α : Type u} (f : Ultrafilter α) {g : Filter α} (hg : (g f).NeBot) :
f g
theorem Ultrafilter.inf_neBot_iff {α : Type u} {f : Ultrafilter α} {g : Filter α} :
(f g).NeBot f g
theorem Ultrafilter.disjoint_iff_not_le {α : Type u} {f : Ultrafilter α} {g : Filter α} :
Disjoint (↑f) g ¬f g
@[simp]
theorem Ultrafilter.compl_not_mem_iff {α : Type u} {f : Ultrafilter α} {s : Set α} :
sf s f
@[simp]
theorem Ultrafilter.frequently_iff_eventually {α : Type u} {f : Ultrafilter α} {p : αProp} :
(∃ᶠ (x : α) in f, p x) ∀ᶠ (x : α) in f, p x
theorem Filter.Frequently.eventually {α : Type u} {f : Ultrafilter α} {p : αProp} :
(∃ᶠ (x : α) in f, p x)∀ᶠ (x : α) in f, p x

Alias of the forward direction of Ultrafilter.frequently_iff_eventually.

theorem Ultrafilter.compl_mem_iff_not_mem {α : Type u} {f : Ultrafilter α} {s : Set α} :
s f sf
theorem Ultrafilter.diff_mem_iff {α : Type u} {s t : Set α} (f : Ultrafilter α) :
s \ t f s f tf
def Ultrafilter.ofComplNotMemIff {α : Type u} (f : Filter α) (h : ∀ (s : Set α), sf s f) :

If sᶜ ∉ f ↔ s ∈ f, then f is an ultrafilter. The other implication is given by Ultrafilter.compl_not_mem_iff.

Equations
def Ultrafilter.ofAtom {α : Type u} (f : Filter α) (hf : IsAtom f) :

If f : Filter α is an atom, then it is an ultrafilter.

Equations
theorem Ultrafilter.nonempty_of_mem {α : Type u} {f : Ultrafilter α} {s : Set α} (hs : s f) :
theorem Ultrafilter.ne_empty_of_mem {α : Type u} {f : Ultrafilter α} {s : Set α} (hs : s f) :
@[simp]
theorem Ultrafilter.empty_not_mem {α : Type u} {f : Ultrafilter α} :
f
@[simp]
theorem Ultrafilter.le_sup_iff {α : Type u} {u : Ultrafilter α} {f g : Filter α} :
u f g u f u g
@[simp]
theorem Ultrafilter.union_mem_iff {α : Type u} {f : Ultrafilter α} {s t : Set α} :
s t f s f t f
theorem Ultrafilter.mem_or_compl_mem {α : Type u} (f : Ultrafilter α) (s : Set α) :
s f s f
theorem Ultrafilter.em {α : Type u} (f : Ultrafilter α) (p : αProp) :
(∀ᶠ (x : α) in f, p x) ∀ᶠ (x : α) in f, ¬p x
theorem Ultrafilter.eventually_or {α : Type u} {f : Ultrafilter α} {p q : αProp} :
(∀ᶠ (x : α) in f, p x q x) (∀ᶠ (x : α) in f, p x) ∀ᶠ (x : α) in f, q x
theorem Ultrafilter.eventually_not {α : Type u} {f : Ultrafilter α} {p : αProp} :
(∀ᶠ (x : α) in f, ¬p x) ¬∀ᶠ (x : α) in f, p x
theorem Ultrafilter.eventually_imp {α : Type u} {f : Ultrafilter α} {p q : αProp} :
(∀ᶠ (x : α) in f, p xq x) (∀ᶠ (x : α) in f, p x)∀ᶠ (x : α) in f, q x
def Ultrafilter.map {α : Type u} {β : Type v} (m : αβ) (f : Ultrafilter α) :

Pushforward for ultrafilters.

Equations
@[simp]
theorem Ultrafilter.coe_map {α : Type u} {β : Type v} (m : αβ) (f : Ultrafilter α) :
(map m f) = Filter.map m f
@[simp]
theorem Ultrafilter.mem_map {α : Type u} {β : Type v} {m : αβ} {f : Ultrafilter α} {s : Set β} :
s map m f m ⁻¹' s f
@[simp]
theorem Ultrafilter.map_id {α : Type u} (f : Ultrafilter α) :
map id f = f
@[simp]
theorem Ultrafilter.map_id' {α : Type u} (f : Ultrafilter α) :
map (fun (x : α) => x) f = f
@[simp]
theorem Ultrafilter.map_map {α : Type u} {β : Type v} {γ : Type u_1} (f : Ultrafilter α) (m : αβ) (n : βγ) :
map n (map m f) = map (n m) f
def Ultrafilter.comap {α : Type u} {β : Type v} {m : αβ} (u : Ultrafilter β) (inj : Function.Injective m) (large : Set.range m u) :

The pullback of an ultrafilter along an injection whose range is large with respect to the given ultrafilter.

Equations
@[simp]
theorem Ultrafilter.mem_comap {α : Type u} {β : Type v} {m : αβ} (u : Ultrafilter β) (inj : Function.Injective m) (large : Set.range m u) {s : Set α} :
s u.comap inj large m '' s u
@[simp]
theorem Ultrafilter.coe_comap {α : Type u} {β : Type v} {m : αβ} (u : Ultrafilter β) (inj : Function.Injective m) (large : Set.range m u) :
(u.comap inj large) = Filter.comap m u
@[simp]
theorem Ultrafilter.comap_id {α : Type u} (f : Ultrafilter α) (h₀ : Function.Injective id := ) (h₁ : Set.range id f := ) :
f.comap h₀ h₁ = f
@[simp]
theorem Ultrafilter.comap_comap {α : Type u} {β : Type v} {γ : Type u_1} (f : Ultrafilter γ) {m : αβ} {n : βγ} (inj₀ : Function.Injective n) (large₀ : Set.range n f) (inj₁ : Function.Injective m) (large₁ : Set.range m f.comap inj₀ large₀) (inj₂ : Function.Injective (n m) := ) (large₂ : Set.range (n m) f := ) :
(f.comap inj₀ large₀).comap inj₁ large₁ = f.comap inj₂ large₂

The principal ultrafilter associated to a point x.

Equations
@[simp]
theorem Ultrafilter.mem_pure {α : Type u} {a : α} {s : Set α} :
s pure a a s
@[simp]
theorem Ultrafilter.coe_pure {α : Type u} (a : α) :
(pure a) = pure a
@[simp]
theorem Ultrafilter.map_pure {α : Type u} {β : Type v} (m : αβ) (a : α) :
map m (pure a) = pure (m a)
@[simp]
theorem Ultrafilter.comap_pure {α : Type u} {β : Type v} {m : αβ} (a : α) (inj : Function.Injective m) (large : Set.range m pure (m a)) :
(pure (m a)).comap inj large = pure a
def Ultrafilter.bind {α : Type u} {β : Type v} (f : Ultrafilter α) (m : αUltrafilter β) :

Monadic bind for ultrafilters, coming from the one on filters defined in terms of map and join.

Equations
Equations
theorem Ultrafilter.exists_le {α : Type u} (f : Filter α) [h : f.NeBot] :
∃ (u : Ultrafilter α), u f

The ultrafilter lemma: Any proper filter is contained in an ultrafilter.

theorem Filter.exists_ultrafilter_le {α : Type u} (f : Filter α) [h : f.NeBot] :
∃ (u : Ultrafilter α), u f

Alias of Ultrafilter.exists_le.


The ultrafilter lemma: Any proper filter is contained in an ultrafilter.

noncomputable def Ultrafilter.of {α : Type u} (f : Filter α) [f.NeBot] :

Construct an ultrafilter extending a given filter. The ultrafilter lemma is the assertion that such a filter exists; we use the axiom of choice to pick one.

Equations
theorem Ultrafilter.of_le {α : Type u} (f : Filter α) [f.NeBot] :
(of f) f
theorem Ultrafilter.of_coe {α : Type u} (f : Ultrafilter α) :
of f = f
theorem Filter.isAtom_pure {α : Type u} {a : α} :
theorem Filter.NeBot.le_pure_iff {α : Type u} {f : Filter α} {a : α} (hf : f.NeBot) :
f pure a f = pure a
theorem Filter.NeBot.eq_pure_iff {α : Type u} {f : Filter α} (hf : f.NeBot) {x : α} :
f = pure x {x} f
@[simp]
theorem Filter.lt_pure_iff {α : Type u} {f : Filter α} {a : α} :
f < pure a f =
theorem Filter.le_pure_iff' {α : Type u} {f : Filter α} {a : α} :
f pure a f = f = pure a
@[simp]
theorem Filter.Iic_pure {α : Type u} (a : α) :
theorem Filter.mem_iff_ultrafilter {α : Type u} {f : Filter α} {s : Set α} :
s f ∀ (g : Ultrafilter α), g fs g
theorem Filter.le_iff_ultrafilter {α : Type u} {f₁ f₂ : Filter α} :
f₁ f₂ ∀ (g : Ultrafilter α), g f₁g f₂
theorem Filter.iSup_ultrafilter_le_eq {α : Type u} (f : Filter α) :
⨆ (g : Ultrafilter α), ⨆ (_ : g f), g = f

A filter equals the intersection of all the ultrafilters which contain it.

theorem Filter.exists_ultrafilter_iff {α : Type u} {f : Filter α} :
(∃ (u : Ultrafilter α), u f) f.NeBot
theorem Filter.forall_neBot_le_iff {α : Type u} {g : Filter α} {p : Filter αProp} (hp : Monotone p) :
(∀ (f : Filter α), f.NeBotf gp f) ∀ (f : Ultrafilter α), f gp f
theorem Ultrafilter.comap_inf_principal_neBot_of_image_mem {α : Type u} {β : Type v} {m : αβ} {s : Set α} {g : Ultrafilter β} (h : m '' s g) :
noncomputable def Ultrafilter.ofComapInfPrincipal {α : Type u} {β : Type v} {m : αβ} {s : Set α} {g : Ultrafilter β} (h : m '' s g) :

Ultrafilter extending the inf of a comapped ultrafilter and a principal ultrafilter.

Equations
theorem Ultrafilter.ofComapInfPrincipal_mem {α : Type u} {β : Type v} {m : αβ} {s : Set α} {g : Ultrafilter β} (h : m '' s g) :
theorem Ultrafilter.ofComapInfPrincipal_eq_of_map {α : Type u} {β : Type v} {m : αβ} {s : Set α} {g : Ultrafilter β} (h : m '' s g) :
theorem Ultrafilter.eq_of_le_pure {X : Type u_2} {α : Filter X} ( : α.NeBot) {x y : X} (hx : α pure x) (hy : α pure y) :
x = y