Documentation

Mathlib.Order.Hom.Basic

Order homomorphisms #

This file defines order homomorphisms, which are bundled monotone functions. A preorder homomorphism f : α →o β is a function α → β along with a proof that ∀ x y, x ≤ y → f x ≤ f y.

Main definitions #

In this file we define the following bundled monotone maps:

We also define many OrderHoms. In some cases we define two versions, one with suffix and one without it (e.g., OrderHom.compₘ and OrderHom.comp). This means that the former function is a "more bundled" version of the latter. We can't just drop the "less bundled" version because the more bundled version usually does not work with dot notation.

We also define two functions to convert other bundled maps to α →o β:

Tags #

monotone map, bundled morphism

@[reducible, inline]
abbrev OrderEmbedding (α : Type u_6) (β : Type u_7) [LE α] [LE β] :
Type (max u_6 u_7)

An order embedding is an embedding f : α ↪ β such that a ≤ b ↔ (f a) ≤ (f b). This definition is an abbreviation of RelEmbedding (≤) (≤).

Equations
  • (α ↪o β) = ((fun (x1 x2 : α) => x1 x2) ↪r fun (x1 x2 : β) => x1 x2)
@[reducible, inline]
abbrev OrderIso (α : Type u_6) (β : Type u_7) [LE α] [LE β] :
Type (max u_6 u_7)

An order isomorphism is an equivalence such that a ≤ b ↔ (f a) ≤ (f b). This definition is an abbreviation of RelIso (≤) (≤).

Equations
  • (α ≃o β) = ((fun (x1 x2 : α) => x1 x2) ≃r fun (x1 x2 : β) => x1 x2)
Instances For
@[reducible, inline]
abbrev OrderHomClass (F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [LE α] [LE β] [FunLike F α β] :

OrderHomClass F α b asserts that F is a type of -preserving morphisms.

Equations
class OrderIsoClass (F : Type u_6) (α : outParam (Type u_7)) (β : outParam (Type u_8)) [LE α] [LE β] [EquivLike F α β] :

OrderIsoClass F α β states that F is a type of order isomorphisms.

You should extend this class when you extend OrderIso.

  • map_le_map_iff (f : F) {a b : α} : f a f b a b

    An order isomorphism respects .

Instances
def OrderIsoClass.toOrderIso {F : Type u_1} {α : Type u_2} {β : Type u_3} [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) :
α ≃o β

Turn an element of a type F satisfying OrderIsoClass F α β into an actual OrderIso. This is declared as the default coercion from F to α ≃o β.

Equations
  • f = { toEquiv := f, map_rel_iff' := }
instance instCoeTCOrderIsoOfOrderIsoClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] :
CoeTC F (α ≃o β)

Any type satisfying OrderIsoClass can be cast into OrderIso via OrderIsoClass.toOrderIso.

Equations
@[instance 100]
instance OrderIsoClass.toOrderHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] :
theorem OrderHomClass.monotone {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [FunLike F α β] [OrderHomClass F α β] (f : F) :
theorem OrderHomClass.mono {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [FunLike F α β] [OrderHomClass F α β] (f : F) :
theorem OrderHomClass.GCongr.mono {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [FunLike F α β] [OrderHomClass F α β] (f : F) {a b : α} (hab : a b) :
f a f b
def OrderHomClass.toOrderHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [FunLike F α β] [OrderHomClass F α β] (f : F) :
α →o β

Turn an element of a type F satisfying OrderHomClass F α β into an actual OrderHom. This is declared as the default coercion from F to α →o β.

Equations
  • f = { toFun := f, monotone' := }
instance OrderHomClass.instCoeTCOrderHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [FunLike F α β] [OrderHomClass F α β] :
CoeTC F (α →o β)

Any type satisfying OrderHomClass can be cast into OrderHom via OrderHomClass.toOrderHom.

Equations
@[simp]
theorem map_inv_le_iff {F : Type u_1} {α : Type u_2} {β : Type u_3} [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) {a : α} {b : β} :
EquivLike.inv f b a b f a
theorem map_inv_le_map_inv_iff {F : Type u_1} {α : Type u_2} {β : Type u_3} [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) {a b : β} :
@[simp]
theorem le_map_inv_iff {F : Type u_1} {α : Type u_2} {β : Type u_3} [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) {a : α} {b : β} :
a EquivLike.inv f b f a b
theorem map_lt_map_iff {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) {a b : α} :
f a < f b a < b
@[simp]
theorem map_inv_lt_iff {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) {a : α} {b : β} :
EquivLike.inv f b < a b < f a
theorem map_inv_lt_map_inv_iff {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) {a b : β} :
@[simp]
theorem lt_map_inv_iff {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [EquivLike F α β] [OrderIsoClass F α β] (f : F) {a : α} {b : β} :
a < EquivLike.inv f b f a < b
instance OrderHom.instFunLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
FunLike (α →o β) α β
Equations
instance OrderHom.instOrderHomClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
OrderHomClass (α →o β) α β
@[simp]
theorem OrderHom.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : αβ) (hf : Monotone f) :
{ toFun := f, monotone' := hf } = f
theorem OrderHom.monotone {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
theorem OrderHom.mono {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
def OrderHom.Simps.coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
αβ

See Note [custom simps projection]. We give this manually so that we use toFun as the projection directly instead.

Equations
@[simp]
theorem OrderHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
f.toFun = f
theorem OrderHom.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f g : α →o β) (h : f = g) :
f = g
@[simp]
theorem OrderHom.coe_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
f = f
@[simp]
theorem OrderHomClass.coe_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] {F : Type u_6} [FunLike F α β] [OrderHomClass F α β] (f : F) :
f = f
instance OrderHom.canLift {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
CanLift (αβ) (α →o β) DFunLike.coe Monotone

One can lift an unbundled monotone function to a bundled one.

def OrderHom.copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) (f' : αβ) (h : f' = f) :
α →o β

Copy of an OrderHom with a new toFun equal to the old one. Useful to fix definitional equalities.

Equations
  • f.copy f' h = { toFun := f', monotone' := }
@[simp]
theorem OrderHom.coe_copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) (f' : αβ) (h : f' = f) :
(f.copy f' h) = f'
theorem OrderHom.copy_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) (f' : αβ) (h : f' = f) :
f.copy f' h = f
def OrderHom.id {α : Type u_2} [Preorder α] :
α →o α

The identity function as bundled monotone function.

Equations
@[simp]
theorem OrderHom.id_coe {α : Type u_2} [Preorder α] :
instance OrderHom.instInhabited {α : Type u_2} [Preorder α] :
Inhabited (α →o α)
Equations
instance OrderHom.instPreorder {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
Preorder (α →o β)

The preorder structure of α →o β is pointwise inequality: f ≤ g ↔ ∀ a, f a ≤ g a.

Equations
theorem OrderHom.le_def {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] {f g : α →o β} :
f g ∀ (x : α), f x g x
@[simp]
theorem OrderHom.coe_le_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] {f g : α →o β} :
f g f g
@[simp]
theorem OrderHom.mk_le_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] {f g : αβ} {hf : Monotone f} {hg : Monotone g} :
{ toFun := f, monotone' := hf } { toFun := g, monotone' := hg } f g
theorem OrderHom.apply_mono {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] {f g : α →o β} {x y : α} (h₁ : f g) (h₂ : x y) :
f x g y
def OrderHom.curry {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] :
(α × β →o γ) ≃o (α →o β →o γ)

Curry/uncurry as an order isomorphism between α × β →o γ and α →o β →o γ.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem OrderHom.curry_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : α × β →o γ) (x : α) (y : β) :
((curry f) x) y = f (x, y)
@[simp]
theorem OrderHom.curry_symm_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : α →o β →o γ) (x : α × β) :
((RelIso.symm curry) f) x = (f x.1) x.2
def OrderHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (g : β →o γ) (f : α →o β) :
α →o γ

The composition of two bundled monotone functions.

Equations
  • g.comp f = { toFun := g f, monotone' := }
@[simp]
theorem OrderHom.comp_coe {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (g : β →o γ) (f : α →o β) :
(g.comp f) = g f
theorem OrderHom.comp_mono {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] g₁ g₂ : β →o γ (hg : g₁ g₂) f₁ f₂ : α →o β (hf : f₁ f₂) :
g₁.comp f₁ g₂.comp f₂
@[simp]
theorem OrderHom.mk_comp_mk {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (g : βγ) (f : αβ) (hg : Monotone g) (hf : Monotone f) :
{ toFun := g, monotone' := hg }.comp { toFun := f, monotone' := hf } = { toFun := g f, monotone' := }
def OrderHom.compₘ {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] :
(β →o γ) →o (α →o β) →o α →o γ

The composition of two bundled monotone functions, a fully bundled version.

Equations
@[simp]
theorem OrderHom.compₘ_coe_coe_coe {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (x : β →o γ) (a✝ : α →o β) :
((compₘ x) a✝) = x a✝
@[simp]
theorem OrderHom.comp_id {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
f.comp id = f
@[simp]
theorem OrderHom.id_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
id.comp f = f
def OrderHom.const (α : Type u_6) [Preorder α] {β : Type u_7} [Preorder β] :
β →o α →o β

Constant function bundled as an OrderHom.

Equations
@[simp]
theorem OrderHom.const_coe_coe (α : Type u_6) [Preorder α] {β : Type u_7} [Preorder β] (b : β) :
((const α) b) = Function.const α b
@[simp]
theorem OrderHom.const_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : α →o β) (c : γ) :
((const β) c).comp f = (const α) c
@[simp]
theorem OrderHom.comp_const {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (γ : Type u_6) [Preorder γ] (f : α →o β) (c : α) :
f.comp ((const γ) c) = (const γ) (f c)
def OrderHom.prod {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : α →o β) (g : α →o γ) :
α →o β × γ

Given two bundled monotone maps f, g, f.prod g is the map x ↦ (f x, g x) bundled as a OrderHom.

Equations
  • f.prod g = { toFun := fun (x : α) => (f x, g x), monotone' := }
@[simp]
theorem OrderHom.prod_coe {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : α →o β) (g : α →o γ) (x : α) :
(f.prod g) x = (f x, g x)
theorem OrderHom.prod_mono {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] {f₁ f₂ : α →o β} (hf : f₁ f₂) {g₁ g₂ : α →o γ} (hg : g₁ g₂) :
f₁.prod g₁ f₂.prod g₂
theorem OrderHom.comp_prod_comp_same {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f₁ f₂ : β →o γ) (g : α →o β) :
(f₁.comp g).prod (f₂.comp g) = (f₁.prod f₂).comp g
def OrderHom.prodₘ {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] :
(α →o β) →o (α →o γ) →o α →o β × γ

Given two bundled monotone maps f, g, f.prod g is the map x ↦ (f x, g x) bundled as a OrderHom. This is a fully bundled version.

Equations
@[simp]
theorem OrderHom.prodₘ_coe_coe_coe {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (x : α →o β) (a✝ : α →o γ) (x✝ : α) :
((prodₘ x) a✝) x✝ = (x x✝, a✝ x✝)
def OrderHom.diag {α : Type u_2} [Preorder α] :
α →o α × α

Diagonal embedding of α into α × α as an OrderHom.

Equations
@[simp]
theorem OrderHom.diag_coe {α : Type u_2} [Preorder α] (x : α) :
diag x = (x, x)
def OrderHom.onDiag {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o α →o β) :
α →o β

Restriction of f : α →o α →o β to the diagonal.

Equations
@[simp]
theorem OrderHom.onDiag_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o α →o β) (a✝ : α) :
f.onDiag a✝ = (f a✝) a✝
def OrderHom.fst {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
α × β →o α

Prod.fst as an OrderHom.

Equations
@[simp]
theorem OrderHom.fst_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (self : α × β) :
fst self = self.1
def OrderHom.snd {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
α × β →o β

Prod.snd as an OrderHom.

Equations
@[simp]
theorem OrderHom.snd_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (self : α × β) :
snd self = self.2
@[simp]
theorem OrderHom.fst_prod_snd {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
@[simp]
theorem OrderHom.fst_comp_prod {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : α →o β) (g : α →o γ) :
fst.comp (f.prod g) = f
@[simp]
theorem OrderHom.snd_comp_prod {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : α →o β) (g : α →o γ) :
snd.comp (f.prod g) = g
def OrderHom.prodIso {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] :
(α →o β × γ) ≃o (α →o β) × (α →o γ)

Order isomorphism between the space of monotone maps to β × γ and the product of the spaces of monotone maps to β and γ.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem OrderHom.prodIso_symm_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : (α →o β) × (α →o γ)) :
@[simp]
theorem OrderHom.prodIso_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (f : α →o β × γ) :
def OrderHom.prodMap {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] (f : α →o β) (g : γ →o δ) :
α × γ →o β × δ

Prod.map of two OrderHoms as an OrderHom.

Equations
@[simp]
theorem OrderHom.prodMap_coe {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] (f : α →o β) (g : γ →o δ) (a✝ : α × γ) :
(f.prodMap g) a✝ = Prod.map (⇑f) (⇑g) a✝
def Pi.evalOrderHom {ι : Type u_6} {π : ιType u_7} [(i : ι) → Preorder (π i)] (i : ι) :
((j : ι) → π j) →o π i

Evaluation of an unbundled function at a point (Function.eval) as an OrderHom.

Equations
@[simp]
theorem Pi.evalOrderHom_coe {ι : Type u_6} {π : ιType u_7} [(i : ι) → Preorder (π i)] (i : ι) :
def OrderHom.coeFnHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
(α →o β) →o αβ

The "forgetful functor" from α →o β to α → β that takes the underlying function, is monotone.

Equations
@[simp]
theorem OrderHom.coeFnHom_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
coeFnHom = fun (f : α →o β) => f
def OrderHom.apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (x : α) :
(α →o β) →o β

Function application fun f => f a (for fixed a) is a monotone function from the monotone function space α →o β to β. See also Pi.evalOrderHom.

Equations
@[simp]
theorem OrderHom.apply_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (x : α) :
(apply x) = Function.eval x fun (f : α →o β) => f
def OrderHom.pi {α : Type u_2} [Preorder α] {ι : Type u_6} {π : ιType u_7} [(i : ι) → Preorder (π i)] (f : (i : ι) → α →o π i) :
α →o (i : ι) → π i

Construct a bundled monotone map α →o Π i, π i from a family of monotone maps f i : α →o π i.

Equations
  • OrderHom.pi f = { toFun := fun (x : α) (i : ι) => (f i) x, monotone' := }
@[simp]
theorem OrderHom.pi_coe {α : Type u_2} [Preorder α] {ι : Type u_6} {π : ιType u_7} [(i : ι) → Preorder (π i)] (f : (i : ι) → α →o π i) (x : α) (i : ι) :
(pi f) x i = (f i) x
def OrderHom.piIso {α : Type u_2} [Preorder α] {ι : Type u_6} {π : ιType u_7} [(i : ι) → Preorder (π i)] :
(α →o (i : ι) → π i) ≃o ((i : ι) → α →o π i)

Order isomorphism between bundled monotone maps α →o Π i, π i and families of bundled monotone maps Π i, α →o π i.

Equations
@[simp]
theorem OrderHom.piIso_symm_apply {α : Type u_2} [Preorder α] {ι : Type u_6} {π : ιType u_7} [(i : ι) → Preorder (π i)] (f : (i : ι) → α →o π i) :
@[simp]
theorem OrderHom.piIso_apply {α : Type u_2} [Preorder α] {ι : Type u_6} {π : ιType u_7} [(i : ι) → Preorder (π i)] (f : α →o (i : ι) → π i) (i : ι) :
def OrderHom.Subtype.val {α : Type u_2} [Preorder α] (p : αProp) :

Subtype.val as a bundled monotone function.

Equations
@[simp]
theorem OrderHom.Subtype.val_coe {α : Type u_2} [Preorder α] (p : αProp) :
def Subtype.orderEmbedding {α : Type u_2} [Preorder α] {p q : αProp} (h : ∀ (a : α), p aq a) :
{ x : α // p x } ↪o { x : α // q x }

Subtype.impEmbedding as an order embedding.

Equations
@[simp]
theorem Subtype.orderEmbedding_apply_coe {α : Type u_2} [Preorder α] {p q : αProp} (h : ∀ (a : α), p aq a) (x : { x : α // p x }) :
((orderEmbedding h) x) = x
instance OrderHom.unique {α : Type u_2} [Preorder α] [Subsingleton α] :
Unique (α →o α)

There is a unique monotone map from a subsingleton to itself.

Equations
theorem OrderHom.orderHom_eq_id {α : Type u_2} [Preorder α] [Subsingleton α] (g : α →o α) :
g = id
def OrderHom.dual {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] :
(α →o β) (αᵒᵈ →o βᵒᵈ)

Reinterpret a bundled monotone function as a monotone function between dual orders.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem OrderHom.dual_symm_apply_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : αᵒᵈ →o βᵒᵈ) (a✝ : α) :
@[simp]
theorem OrderHom.dual_apply_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) (a✝ : αᵒᵈ) :
@[simp]
theorem OrderHom.dual_id {α : Type u_2} [Preorder α] :
@[simp]
theorem OrderHom.dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (g : β →o γ) (f : α →o β) :
@[simp]
theorem OrderHom.symm_dual_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ) :
def OrderHom.dualIso (α : Type u_8) (β : Type u_9) [Preorder α] [Preorder β] :

OrderHom.dual as an order isomorphism.

Equations
def OrderHom.withBotMap {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :

Lift an order homomorphism f : α →o β to an order homomorphism WithBot α →o WithBot β.

Equations
@[simp]
theorem OrderHom.withBotMap_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
def OrderHom.withTopMap {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :

Lift an order homomorphism f : α →o β to an order homomorphism WithTop α →o WithTop β.

Equations
@[simp]
theorem OrderHom.withTopMap_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :
def OrderHom.uliftMap {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) :

Lift an order homomorphism f : α →o β to an order homomorphism ULift α →o ULift β in a higher universe.

Equations
@[simp]
theorem OrderHom.uliftMap_coe_down {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α →o β) (i : ULift.{u_8, u_2} α) :
(f.uliftMap i).down = f i.down
@[instance 90]
instance OrderHomClass.toOrderHomClassOrderDual {F : Type u_1} {α : Type u_2} {β : Type u_3} [LE α] [LE β] [FunLike F α β] [OrderHomClass F α β] :
def RelEmbedding.orderEmbeddingOfLTEmbedding {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (f : (fun (x1 x2 : α) => x1 < x2) ↪r fun (x1 x2 : β) => x1 < x2) :
α ↪o β

Embeddings of partial orders that preserve < also preserve .

Equations
@[simp]
theorem RelEmbedding.orderEmbeddingOfLTEmbedding_apply {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] {f : (fun (x1 x2 : α) => x1 < x2) ↪r fun (x1 x2 : β) => x1 < x2} {x : α} :
def OrderEmbedding.ltEmbedding {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :
(fun (x1 x2 : α) => x1 < x2) ↪r fun (x1 x2 : β) => x1 < x2

< is preserved by order embeddings of preorders.

Equations
@[simp]
theorem OrderEmbedding.ltEmbedding_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) (x : α) :
f.ltEmbedding x = f x
@[simp]
theorem OrderEmbedding.le_iff_le {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) {a b : α} :
f a f b a b
@[simp]
theorem OrderEmbedding.lt_iff_lt {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) {a b : α} :
f a < f b a < b
theorem OrderEmbedding.eq_iff_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) {a b : α} :
f a = f b a = b
theorem OrderEmbedding.monotone {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :
theorem OrderEmbedding.strictMono {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :
theorem OrderEmbedding.acc {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) (a : α) :
Acc (fun (x1 x2 : β) => x1 < x2) (f a)Acc (fun (x1 x2 : α) => x1 < x2) a
theorem OrderEmbedding.wellFounded {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :
(WellFounded fun (x1 x2 : β) => x1 < x2)WellFounded fun (x1 x2 : α) => x1 < x2
theorem OrderEmbedding.isWellOrder {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [IsWellOrder β fun (x1 x2 : β) => x1 < x2] (f : α ↪o β) :
IsWellOrder α fun (x1 x2 : α) => x1 < x2
def OrderEmbedding.dual {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :

An order embedding is also an order embedding between dual orders.

Equations
theorem OrderEmbedding.wellFoundedLT {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [WellFoundedLT β] (f : α ↪o β) :

A preorder which embeds into a well-founded preorder is itself well-founded.

theorem OrderEmbedding.wellFoundedGT {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [WellFoundedGT β] (f : α ↪o β) :

A preorder which embeds into a preorder in which (· > ·) is well-founded also has (· > ·) well-founded.

def OrderEmbedding.withBotMap {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :

A version of WithBot.map for order embeddings.

Equations
@[simp]
theorem OrderEmbedding.withBotMap_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :
def OrderEmbedding.withTopMap {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :

A version of WithTop.map for order embeddings.

Equations
@[simp]
theorem OrderEmbedding.withTopMap_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (f : α ↪o β) :

Coercion α → WithBot α as an OrderEmbedding.

Equations

Coercion α → WithTop α as an OrderEmbedding.

Equations
def OrderEmbedding.ofMapLEIff {α : Type u_6} {β : Type u_7} [PartialOrder α] [Preorder β] (f : αβ) (hf : ∀ (a b : α), f a f b a b) :
α ↪o β

To define an order embedding from a partial order to a preorder it suffices to give a function together with a proof that it satisfies f a ≤ f b ↔ a ≤ b.

Equations
@[simp]
theorem OrderEmbedding.coe_ofMapLEIff {α : Type u_6} {β : Type u_7} [PartialOrder α] [Preorder β] {f : αβ} (h : ∀ (a b : α), f a f b a b) :
(ofMapLEIff f h) = f
def OrderEmbedding.ofStrictMono {α : Type u_6} {β : Type u_7} [LinearOrder α] [Preorder β] (f : αβ) (h : StrictMono f) :
α ↪o β

A strictly monotone map from a linear order is an order embedding.

Equations
@[simp]
theorem OrderEmbedding.coe_ofStrictMono {α : Type u_6} {β : Type u_7} [LinearOrder α] [Preorder β] {f : αβ} (h : StrictMono f) :
(ofStrictMono f h) = f
def OrderEmbedding.subtype {α : Type u_2} [Preorder α] (p : αProp) :

Embedding of a subtype into the ambient type as an OrderEmbedding.

Equations
@[simp]
theorem OrderEmbedding.subtype_apply {α : Type u_2} [Preorder α] {p : αProp} (x : Subtype p) :
(subtype p) x = x
@[simp]
theorem OrderEmbedding.coe_subtype {α : Type u_2} [Preorder α] (p : αProp) :
def OrderEmbedding.toOrderHom {X : Type u_6} {Y : Type u_7} [Preorder X] [Preorder Y] (f : X ↪o Y) :
X →o Y

Convert an OrderEmbedding to an OrderHom.

Equations
@[simp]
theorem OrderEmbedding.toOrderHom_coe {X : Type u_6} {Y : Type u_7} [Preorder X] [Preorder Y] (f : X ↪o Y) :
f.toOrderHom = f
def OrderEmbedding.ofIsEmpty {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [IsEmpty α] :
α ↪o β

The trivial embedding from an empty preorder to another preorder

Equations
@[simp]
theorem OrderEmbedding.ofIsEmpty_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [IsEmpty α] (a : α) :
@[simp]
theorem OrderEmbedding.coe_ofIsEmpty {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [IsEmpty α] :
ofIsEmpty = fun (a : α) => isEmptyElim a
theorem Disjoint.of_orderEmbedding {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (f : α ↪o β) [OrderBot α] [OrderBot β] {a₁ a₂ : α} :
Disjoint (f a₁) (f a₂)Disjoint a₁ a₂

If the images by an order embedding of two elements are disjoint, then they are themselves disjoint.

theorem Codisjoint.of_orderEmbedding {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (f : α ↪o β) [OrderTop α] [OrderTop β] {a₁ a₂ : α} :
Codisjoint (f a₁) (f a₂)Codisjoint a₁ a₂

If the images by an order embedding of two elements are codisjoint, then they are themselves codisjoint.

theorem IsCompl.of_orderEmbedding {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (f : α ↪o β) [BoundedOrder α] [BoundedOrder β] {a₁ a₂ : α} :
IsCompl (f a₁) (f a₂)IsCompl a₁ a₂

If the images by an order embedding of two elements are complements, then they are themselves complements.

def RelHom.toOrderHom {α : Type u_2} {β : Type u_3} [PartialOrder α] [Preorder β] (f : (fun (x1 x2 : α) => x1 < x2) →r fun (x1 x2 : β) => x1 < x2) :
α →o β

A bundled expression of the fact that a map between partial orders that is strictly monotone is weakly monotone.

Equations
@[simp]
theorem RelHom.toOrderHom_coe {α : Type u_2} {β : Type u_3} [PartialOrder α] [Preorder β] (f : (fun (x1 x2 : α) => x1 < x2) →r fun (x1 x2 : β) => x1 < x2) :
f.toOrderHom = f
theorem RelEmbedding.toOrderHom_injective {α : Type u_2} {β : Type u_3} [PartialOrder α] [Preorder β] (f : (fun (x1 x2 : α) => x1 < x2) ↪r fun (x1 x2 : β) => x1 < x2) :
instance OrderIso.instEquivLike {α : Type u_2} {β : Type u_3} [LE α] [LE β] :
EquivLike (α ≃o β) α β
Equations
instance OrderIso.instOrderIsoClass {α : Type u_2} {β : Type u_3} [LE α] [LE β] :
OrderIsoClass (α ≃o β) α β
@[simp]
theorem OrderIso.toFun_eq_coe {α : Type u_2} {β : Type u_3} [LE α] [LE β] {f : α ≃o β} :
f.toFun = f
theorem OrderIso.ext {α : Type u_2} {β : Type u_3} [LE α] [LE β] {f g : α ≃o β} (h : f = g) :
f = g
def OrderIso.toOrderEmbedding {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
α ↪o β

Reinterpret an order isomorphism as an order embedding.

Equations
@[simp]
theorem OrderIso.coe_toOrderEmbedding {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
theorem OrderIso.bijective {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
theorem OrderIso.injective {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
theorem OrderIso.surjective {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
theorem OrderIso.apply_eq_iff_eq {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) {x y : α} :
e x = e y x = y
def OrderIso.refl (α : Type u_6) [LE α] :
α ≃o α

Identity order isomorphism.

Equations
@[simp]
theorem OrderIso.coe_refl {α : Type u_2} [LE α] :
(refl α) = id
@[simp]
theorem OrderIso.refl_apply {α : Type u_2} [LE α] (x : α) :
(refl α) x = x
@[simp]
theorem OrderIso.refl_toEquiv {α : Type u_2} [LE α] :
def OrderIso.symm {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
β ≃o α

Inverse of an order isomorphism.

Equations
@[simp]
theorem OrderIso.apply_symm_apply {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) (x : β) :
e (e.symm x) = x
@[simp]
theorem OrderIso.symm_apply_apply {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) (x : α) :
e.symm (e x) = x
@[simp]
theorem OrderIso.symm_refl (α : Type u_6) [LE α] :
(refl α).symm = refl α
theorem OrderIso.apply_eq_iff_eq_symm_apply {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) (x : α) (y : β) :
e x = y x = e.symm y
theorem OrderIso.symm_apply_eq {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) {x : α} {y : β} :
e.symm y = x y = e x
@[simp]
theorem OrderIso.symm_symm {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
e.symm.symm = e
theorem OrderIso.symm_bijective {α : Type u_2} {β : Type u_3} [LE α] [LE β] :
theorem OrderIso.symm_injective {α : Type u_2} {β : Type u_3} [LE α] [LE β] :
@[simp]
theorem OrderIso.toEquiv_symm {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
def OrderIso.trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LE α] [LE β] [LE γ] (e : α ≃o β) (e' : β ≃o γ) :
α ≃o γ

Composition of two order isomorphisms is an order isomorphism.

Equations
@[simp]
theorem OrderIso.coe_trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LE α] [LE β] [LE γ] (e : α ≃o β) (e' : β ≃o γ) :
(e.trans e') = e' e
@[simp]
theorem OrderIso.trans_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LE α] [LE β] [LE γ] (e : α ≃o β) (e' : β ≃o γ) (x : α) :
(e.trans e') x = e' (e x)
@[simp]
theorem OrderIso.refl_trans {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
(refl α).trans e = e
@[simp]
theorem OrderIso.trans_refl {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
e.trans (refl β) = e
@[simp]
theorem OrderIso.symm_trans_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LE α] [LE β] [LE γ] (e₁ : α ≃o β) (e₂ : β ≃o γ) (c : γ) :
(e₁.trans e₂).symm c = e₁.symm (e₂.symm c)
theorem OrderIso.symm_trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LE α] [LE β] [LE γ] (e₁ : α ≃o β) (e₂ : β ≃o γ) :
(e₁.trans e₂).symm = e₂.symm.trans e₁.symm
@[simp]
theorem OrderIso.self_trans_symm {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
e.trans e.symm = refl α
@[simp]
theorem OrderIso.symm_trans_self {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) :
e.symm.trans e = refl β
def OrderIso.arrowCongr {α : Type u_6} {β : Type u_7} {γ : Type u_8} {δ : Type u_9} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] (f : α ≃o γ) (g : β ≃o δ) :
(α →o β) ≃o (γ →o δ)

An order isomorphism between the domains and codomains of two prosets of order homomorphisms gives an order isomorphism between the two function prosets.

Equations
@[simp]
theorem OrderIso.arrowCongr_apply {α : Type u_6} {β : Type u_7} {γ : Type u_8} {δ : Type u_9} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] (f : α ≃o γ) (g : β ≃o δ) (p : α →o β) :
(f.arrowCongr g) p = (↑g).comp (p.comp f.symm)
@[simp]
theorem OrderIso.arrowCongr_symm_apply {α : Type u_6} {β : Type u_7} {γ : Type u_8} {δ : Type u_9} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] (f : α ≃o γ) (g : β ≃o δ) (p : γ →o δ) :
(RelIso.symm (f.arrowCongr g)) p = (↑g.symm).comp (p.comp f)
def OrderIso.conj {α : Type u_6} {β : Type u_7} [Preorder α] [Preorder β] (f : α ≃o β) :
(α →o α) (β →o β)

If α and β are order-isomorphic then the two orders of order-homomorphisms from α and β to themselves are order-isomorphic.

Equations
@[simp]
theorem OrderIso.conj_symm_apply {α : Type u_6} {β : Type u_7} [Preorder α] [Preorder β] (f : α ≃o β) (a✝ : β →o β) :
f.conj.symm a✝ = EquivLike.inv (f.arrowCongr f) a✝
@[simp]
theorem OrderIso.conj_apply {α : Type u_6} {β : Type u_7} [Preorder α] [Preorder β] (f : α ≃o β) (a : α →o α) :
f.conj a = (↑f).comp (a.comp f.symm)
def OrderIso.prodComm {α : Type u_2} {β : Type u_3} [LE α] [LE β] :
α × β ≃o β × α

Prod.swap as an OrderIso.

Equations
@[simp]
theorem OrderIso.coe_prodComm {α : Type u_2} {β : Type u_3} [LE α] [LE β] :
@[simp]
theorem OrderIso.prodComm_symm {α : Type u_2} {β : Type u_3} [LE α] [LE β] :
def OrderIso.dualDual (α : Type u_2) [LE α] :

The order isomorphism between a type and its double dual.

Equations
@[simp]
@[simp]
theorem OrderIso.dualDual_apply {α : Type u_2} [LE α] (a : α) :
theorem OrderIso.le_iff_le {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) {x y : α} :
e x e y x y
theorem OrderIso.GCongr.orderIso_apply_le_apply {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) {x y : α} :
x ye x e y

Alias of the reverse direction of OrderIso.le_iff_le.

theorem OrderIso.le_symm_apply {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) {x : α} {y : β} :
x e.symm y e x y
theorem OrderIso.symm_apply_le {α : Type u_2} {β : Type u_3} [LE α] [LE β] (e : α ≃o β) {x : α} {y : β} :
e.symm y x y e x
theorem OrderIso.monotone {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) :
theorem OrderIso.strictMono {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) :
@[simp]
theorem OrderIso.lt_iff_lt {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) {x y : α} :
e x < e y x < y
theorem OrderIso.GCongr.orderIso_apply_lt_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) {x y : α} :
x < ye x < e y

Alias of the reverse direction of OrderIso.lt_iff_lt.

def OrderIso.toRelIsoLT {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) :
(fun (x1 x2 : α) => x1 < x2) ≃r fun (x1 x2 : β) => x1 < x2

Converts an OrderIso into a RelIso (<) (<).

Equations
@[simp]
theorem OrderIso.toRelIsoLT_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) (x : α) :
e.toRelIsoLT x = e x
@[simp]
theorem OrderIso.toRelIsoLT_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α ≃o β) :
def OrderIso.ofRelIsoLT {α : Type u_6} {β : Type u_7} [PartialOrder α] [PartialOrder β] (e : (fun (x1 x2 : α) => x1 < x2) ≃r fun (x1 x2 : β) => x1 < x2) :
α ≃o β

Converts a RelIso (<) (<) into an OrderIso.

Equations
@[simp]
theorem OrderIso.ofRelIsoLT_apply {α : Type u_6} {β : Type u_7} [PartialOrder α] [PartialOrder β] (e : (fun (x1 x2 : α) => x1 < x2) ≃r fun (x1 x2 : β) => x1 < x2) (x : α) :
(ofRelIsoLT e) x = e x
@[simp]
theorem OrderIso.ofRelIsoLT_symm {α : Type u_6} {β : Type u_7} [PartialOrder α] [PartialOrder β] (e : (fun (x1 x2 : α) => x1 < x2) ≃r fun (x1 x2 : β) => x1 < x2) :
@[simp]
theorem OrderIso.ofRelIsoLT_toRelIsoLT {α : Type u_6} {β : Type u_7} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :
@[simp]
theorem OrderIso.toRelIsoLT_ofRelIsoLT {α : Type u_6} {β : Type u_7} [PartialOrder α] [PartialOrder β] (e : (fun (x1 x2 : α) => x1 < x2) ≃r fun (x1 x2 : β) => x1 < x2) :
def OrderIso.ofCmpEqCmp {α : Type u_6} {β : Type u_7} [LinearOrder α] [LinearOrder β] (f : αβ) (g : βα) (h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b) :
α ≃o β

To show that f : α → β, g : β → α make up an order isomorphism of linear orders, it suffices to prove cmp a (g b) = cmp (f a) b.

Equations
  • OrderIso.ofCmpEqCmp f g h = { toFun := f, invFun := g, left_inv := , right_inv := , map_rel_iff' := }
def OrderIso.ofHomInv {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] {F : Type u_6} {G : Type u_7} [FunLike F α β] [OrderHomClass F α β] [FunLike G β α] [OrderHomClass G β α] (f : F) (g : G) (h₁ : (↑f).comp g = OrderHom.id) (h₂ : (↑g).comp f = OrderHom.id) :
α ≃o β

To show that f : α →o β and g : β →o α make up an order isomorphism it is enough to show that g is the inverse of f.

Equations
  • OrderIso.ofHomInv f g h₁ h₂ = { toFun := f, invFun := g, left_inv := , right_inv := , map_rel_iff' := }
def OrderIso.funUnique (α : Type u_6) (β : Type u_7) [Unique α] [Preorder β] :
(αβ) ≃o β

Order isomorphism between α → β and β, where α has a unique element.

Equations
@[simp]
theorem OrderIso.funUnique_toEquiv (α : Type u_6) (β : Type u_7) [Unique α] [Preorder β] :
@[simp]
theorem OrderIso.funUnique_apply (α : Type u_6) (β : Type u_7) [Unique α] [Preorder β] (f : (i : α) → (fun (a : α) => β) i) :
(funUnique α β) f = f default
@[simp]
theorem OrderIso.funUnique_symm_apply {α : Type u_6} {β : Type u_7} [Unique α] [Preorder β] :
noncomputable def OrderIso.ofUnique (α : Type u_6) (β : Type u_7) [Unique α] [Unique β] [Preorder α] [Preorder β] :
α ≃o β

The order isomorphism α ≃o β when α and β are preordered types containing unique elements.

Equations
@[simp]
theorem OrderIso.ofUnique_apply (α : Type u_6) (β : Type u_7) [Unique α] [Unique β] [Preorder α] [Preorder β] (a✝ : α) :
(ofUnique α β) a✝ = default
@[simp]
theorem OrderIso.ofUnique_symm_apply (α : Type u_6) (β : Type u_7) [Unique α] [Unique β] [Preorder α] [Preorder β] (a✝ : β) :
(RelIso.symm (ofUnique α β)) a✝ = default
def Equiv.toOrderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
α ≃o β

If e is an equivalence with monotone forward and inverse maps, then e is an order isomorphism.

Equations
  • e.toOrderIso h₁ h₂ = { toEquiv := e, map_rel_iff' := }
@[simp]
theorem Equiv.coe_toOrderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
(e.toOrderIso h₁ h₂) = e
@[simp]
theorem Equiv.toOrderIso_toEquiv {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] (e : α β) (h₁ : Monotone e) (h₂ : Monotone e.symm) :
(e.toOrderIso h₁ h₂).toEquiv = e
def StrictMono.orderIsoOfRightInverse {α : Type u_2} {β : Type u_3} [LinearOrder α] [Preorder β] (f : αβ) (h_mono : StrictMono f) (g : βα) (hg : Function.RightInverse g f) :
α ≃o β

A strictly monotone function with a right inverse is an order isomorphism.

Equations
@[simp]
theorem StrictMono.orderIsoOfRightInverse_apply {α : Type u_2} {β : Type u_3} [LinearOrder α] [Preorder β] (f : αβ) (h_mono : StrictMono f) (g : βα) (hg : Function.RightInverse g f) :
(orderIsoOfRightInverse f h_mono g hg) = f
@[simp]
theorem StrictMono.orderIsoOfRightInverse_symm_apply {α : Type u_2} {β : Type u_3} [LinearOrder α] [Preorder β] (f : αβ) (h_mono : StrictMono f) (g : βα) (hg : Function.RightInverse g f) :
(RelIso.symm (orderIsoOfRightInverse f h_mono g hg)) = g
def OrderIso.dual {α : Type u_2} {β : Type u_3} [LE α] [LE β] (f : α ≃o β) :

An order isomorphism is also an order isomorphism between dual orders.

Equations
theorem OrderIso.map_bot' {α : Type u_2} {β : Type u_3} [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ (x' : α), x x') (hy : ∀ (y' : β), y y') :
f x = y
theorem OrderIso.map_bot {α : Type u_2} {β : Type u_3} [LE α] [PartialOrder β] [OrderBot α] [OrderBot β] (f : α ≃o β) :
theorem OrderIso.map_top' {α : Type u_2} {β : Type u_3} [LE α] [PartialOrder β] (f : α ≃o β) {x : α} {y : β} (hx : ∀ (x' : α), x' x) (hy : ∀ (y' : β), y' y) :
f x = y
theorem OrderIso.map_top {α : Type u_2} {β : Type u_3} [LE α] [PartialOrder β] [OrderTop α] [OrderTop β] (f : α ≃o β) :
theorem OrderEmbedding.map_inf_le {α : Type u_2} {β : Type u_3} [SemilatticeInf α] [SemilatticeInf β] (f : α ↪o β) (x y : α) :
f (x y) f x f y
theorem OrderEmbedding.le_map_sup {α : Type u_2} {β : Type u_3} [SemilatticeSup α] [SemilatticeSup β] (f : α ↪o β) (x y : α) :
f x f y f (x y)
theorem OrderIso.map_inf {α : Type u_2} {β : Type u_3} [SemilatticeInf α] [SemilatticeInf β] (f : α ≃o β) (x y : α) :
f (x y) = f x f y
theorem OrderIso.map_sup {α : Type u_2} {β : Type u_3} [SemilatticeSup α] [SemilatticeSup β] (f : α ≃o β) (x y : α) :
f (x y) = f x f y
theorem OrderIso.isMax_apply {α : Type u_6} {β : Type u_7} [Preorder α] [Preorder β] (f : α ≃o β) {x : α} :
IsMax (f x) IsMax x
theorem OrderIso.isMin_apply {α : Type u_6} {β : Type u_7} [Preorder α] [Preorder β] (f : α ≃o β) {x : α} :
IsMin (f x) IsMin x
theorem Disjoint.map_orderIso {α : Type u_2} {β : Type u_3} [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β] {a b : α} (f : α ≃o β) (ha : Disjoint a b) :
Disjoint (f a) (f b)

Note that this goal could also be stated (Disjoint on f) a b

theorem Codisjoint.map_orderIso {α : Type u_2} {β : Type u_3} [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β] {a b : α} (f : α ≃o β) (ha : Codisjoint a b) :
Codisjoint (f a) (f b)

Note that this goal could also be stated (Codisjoint on f) a b

@[simp]
theorem disjoint_map_orderIso_iff {α : Type u_2} {β : Type u_3} [SemilatticeInf α] [OrderBot α] [SemilatticeInf β] [OrderBot β] {a b : α} (f : α ≃o β) :
Disjoint (f a) (f b) Disjoint a b
@[simp]
theorem codisjoint_map_orderIso_iff {α : Type u_2} {β : Type u_3} [SemilatticeSup α] [OrderTop α] [SemilatticeSup β] [OrderTop β] {a b : α} (f : α ≃o β) :
Codisjoint (f a) (f b) Codisjoint a b

Taking the dual then adding is the same as adding then taking the dual. This is the order iso form of WithBot.ofDual, as proven by coe_toDualTopEquiv_eq.

Equations

Embedding into WithBot α.

Equations
@[simp]
theorem Function.Embedding.coeWithBot_apply {α : Type u_2} (a✝ : α) :
coeWithBot a✝ = a✝
def WithBot.coeOrderHom {α : Type u_6} [Preorder α] :

The coercion α → WithBot α bundled as monotone map.

Equations
@[simp]
theorem WithBot.coeOrderHom_apply {α : Type u_6} [Preorder α] (a✝ : α) :
coeOrderHom a✝ = a✝

Taking the dual then adding is the same as adding then taking the dual. This is the order iso form of WithTop.ofDual, as proven by coe_toDualBotEquiv_eq.

Equations

Embedding into WithTop α.

Equations
@[simp]
theorem Function.Embedding.coeWithTop_apply {α : Type u_2} (a✝ : α) :
coeWithTop a✝ = a✝
def WithTop.coeOrderHom {α : Type u_6} [Preorder α] :

The coercion α → WithTop α bundled as monotone map.

Equations
@[simp]
theorem WithTop.coeOrderHom_apply {α : Type u_6} [Preorder α] (a✝ : α) :
coeOrderHom a✝ = a✝
def OrderIso.withTopCongr {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :

A version of Equiv.optionCongr for WithTop.

Equations
@[simp]
theorem OrderIso.withTopCongr_apply {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (e : α ≃o β) (a✝ : Option α) :
e.withTopCongr a✝ = Option.map (⇑e) a✝
@[simp]
theorem OrderIso.withTopCongr_symm {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :
@[simp]
theorem OrderIso.withTopCongr_trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [PartialOrder α] [PartialOrder β] [PartialOrder γ] (e₁ : α ≃o β) (e₂ : β ≃o γ) :
def OrderIso.withBotCongr {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :

A version of Equiv.optionCongr for WithBot.

Equations
@[simp]
theorem OrderIso.withBotCongr_apply {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (e : α ≃o β) (a✝ : Option α) :
e.withBotCongr a✝ = Option.map (⇑e) a✝
@[simp]
theorem OrderIso.withBotCongr_symm {α : Type u_2} {β : Type u_3} [PartialOrder α] [PartialOrder β] (e : α ≃o β) :
@[simp]
theorem OrderIso.withBotCongr_trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [PartialOrder α] [PartialOrder β] [PartialOrder γ] (e₁ : α ≃o β) (e₂ : β ≃o γ) :
theorem OrderIso.isCompl {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] [BoundedOrder α] [BoundedOrder β] (f : α ≃o β) {x y : α} (h : IsCompl x y) :
IsCompl (f x) (f y)
theorem OrderIso.isCompl_iff {α : Type u_2} {β : Type u_3} [Lattice α] [Lattice β] [BoundedOrder α] [BoundedOrder β] (f : α ≃o β) {x y : α} :
IsCompl x y IsCompl (f x) (f y)
@[instance 90]
instance OrderIsoClass.toOrderIsoClassOrderDual {F : Type u_1} {α : Type u_2} {β : Type u_3} [LE α] [LE β] [EquivLike F α β] [OrderIsoClass F α β] :
theorem denselyOrdered_iff_of_orderIsoClass {X : Type u_6} {Y : Type u_7} {F : Type u_8} [Preorder X] [Preorder Y] [EquivLike F X Y] [OrderIsoClass F X Y] (f : F) :