Multiplicity of a divisor #
For a commutative monoid, this file introduces the notion of multiplicity of a divisor and proves several basic results on it.
Main definitions #
emultiplicity a b
: for two elementsa
andb
of a commutative monoid returns the largest numbern
such thata ^ n ∣ b
or infinity, written⊤
, ifa ^ n ∣ b
for all natural numbersn
.multiplicity a b
: aℕ
-valued version ofmultiplicity
, defaulting for1
instead of⊤
. The reason for using1
as a default value instead of0
is to havemultiplicity_eq_zero_iff
.multiplicity.Finite a b
: a predicate denoting that the multiplicity ofa
inb
is finite.
@[reducible, inline]
multiplicity.Finite a b
indicates that the multiplicity of a
in b
is finite.
Instances For
emultiplicity a b
returns the largest natural number n
such that
a ^ n ∣ b
, as an ℕ∞
. If ∀ n, a ^ n ∣ b
then it returns ⊤
.
Equations
- emultiplicity a b = if h : multiplicity.Finite a b then ↑(Nat.find h) else ⊤
Instances For
A ℕ
-valued version of emultiplicity
, returning 1
instead of ⊤
.
Equations
- multiplicity a b = WithTop.untop' 1 (emultiplicity a b)
Instances For
@[simp]
theorem
emultiplicity_eq_top
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
emultiplicity a b = ⊤ ↔ ¬multiplicity.Finite a b
theorem
emultiplicity_lt_top
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
emultiplicity a b < ⊤ ↔ multiplicity.Finite a b
theorem
finite_iff_emultiplicity_ne_top
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
multiplicity.Finite a b ↔ emultiplicity a b ≠ ⊤
theorem
Finite.emultiplicity_ne_top
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
multiplicity.Finite a b → emultiplicity a b ≠ ⊤
Alias of the forward direction of finite_iff_emultiplicity_ne_top
.
theorem
finite_of_emultiplicity_eq_natCast
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
(h : emultiplicity a b = ↑n)
:
theorem
multiplicity_eq_of_emultiplicity_eq_some
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
(h : emultiplicity a b = ↑n)
:
multiplicity a b = n
theorem
emultiplicity_ne_of_multiplicity_ne
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
:
multiplicity a b ≠ n → emultiplicity a b ≠ ↑n
theorem
multiplicity.Finite.emultiplicity_eq_multiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(h : multiplicity.Finite a b)
:
emultiplicity a b = ↑(multiplicity a b)
theorem
multiplicity.Finite.emultiplicity_eq_iff_multiplicity_eq
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
(h : multiplicity.Finite a b)
:
emultiplicity a b = ↑n ↔ multiplicity a b = n
theorem
emultiplicity_eq_iff_multiplicity_eq_of_ne_one
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
(h : n ≠ 1)
:
emultiplicity a b = ↑n ↔ multiplicity a b = n
theorem
emultiplicity_eq_zero_iff_multiplicity_eq_zero
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
emultiplicity a b = 0 ↔ multiplicity a b = 0
@[simp]
theorem
multiplicity_eq_one_of_not_finite
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(h : ¬multiplicity.Finite a b)
:
multiplicity a b = 1
@[simp]
theorem
multiplicity_le_emultiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
↑(multiplicity a b) ≤ emultiplicity a b
@[simp]
theorem
multiplicity_eq_of_emultiplicity_eq
{α : Type u_1}
{β : Type u_2}
[Monoid α]
[Monoid β]
{a : α}
{b : α}
{c : β}
{d : β}
(h : emultiplicity a b = emultiplicity c d)
:
multiplicity a b = multiplicity c d
theorem
multiplicity_le_of_emultiplicity_le
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
(h : emultiplicity a b ≤ ↑n)
:
multiplicity a b ≤ n
theorem
multiplicity.Finite.emultiplicity_le_of_multiplicity_le
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hfin : multiplicity.Finite a b)
{n : ℕ}
(h : multiplicity a b ≤ n)
:
emultiplicity a b ≤ ↑n
theorem
le_emultiplicity_of_le_multiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
(h : n ≤ multiplicity a b)
:
↑n ≤ emultiplicity a b
theorem
multiplicity.Finite.le_multiplicity_of_le_emultiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hfin : multiplicity.Finite a b)
{n : ℕ}
(h : ↑n ≤ emultiplicity a b)
:
n ≤ multiplicity a b
theorem
multiplicity_lt_of_emultiplicity_lt
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
(h : emultiplicity a b < ↑n)
:
multiplicity a b < n
theorem
multiplicity.Finite.emultiplicity_lt_of_multiplicity_lt
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hfin : multiplicity.Finite a b)
{n : ℕ}
(h : multiplicity a b < n)
:
emultiplicity a b < ↑n
theorem
lt_emultiplicity_of_lt_multiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{n : ℕ}
(h : n < multiplicity a b)
:
↑n < emultiplicity a b
theorem
multiplicity.Finite.lt_multiplicity_of_lt_emultiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hfin : multiplicity.Finite a b)
{n : ℕ}
(h : ↑n < emultiplicity a b)
:
n < multiplicity a b
theorem
emultiplicity_pos_iff
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
0 < emultiplicity a b ↔ 0 < multiplicity a b
theorem
multiplicity.Finite.not_dvd_of_one_right
{α : Type u_1}
[Monoid α]
{a : α}
:
multiplicity.Finite a 1 → ¬a ∣ 1
@[deprecated Int.natCast_multiplicity]
Alias of Int.natCast_multiplicity
.
theorem
multiplicity.Finite.not_unit
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(h : multiplicity.Finite a b)
:
theorem
multiplicity.Finite.mul_left
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{c : α}
:
multiplicity.Finite a (b * c) → multiplicity.Finite a b
theorem
pow_dvd_of_le_emultiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{k : ℕ}
(hk : ↑k ≤ emultiplicity a b)
:
theorem
pow_dvd_of_le_multiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{k : ℕ}
(hk : k ≤ multiplicity a b)
:
@[simp]
theorem
not_pow_dvd_of_emultiplicity_lt
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{m : ℕ}
(hm : emultiplicity a b < ↑m)
:
theorem
multiplicity.Finite.not_pow_dvd_of_multiplicity_lt
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hf : multiplicity.Finite a b)
{m : ℕ}
(hm : multiplicity a b < m)
:
theorem
multiplicity_pos_of_dvd
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hdiv : a ∣ b)
:
0 < multiplicity a b
theorem
emultiplicity_pos_of_dvd
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hdiv : a ∣ b)
:
0 < emultiplicity a b
theorem
le_emultiplicity_of_pow_dvd
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{k : ℕ}
(hk : a ^ k ∣ b)
:
↑k ≤ emultiplicity a b
theorem
multiplicity.Finite.le_multiplicity_of_pow_dvd
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hf : multiplicity.Finite a b)
{k : ℕ}
(hk : a ^ k ∣ b)
:
k ≤ multiplicity a b
theorem
pow_dvd_iff_le_emultiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{k : ℕ}
:
a ^ k ∣ b ↔ ↑k ≤ emultiplicity a b
theorem
multiplicity.Finite.pow_dvd_iff_le_multiplicity
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hf : multiplicity.Finite a b)
{k : ℕ}
:
a ^ k ∣ b ↔ k ≤ multiplicity a b
theorem
multiplicity.Finite.multiplicity_lt_iff_not_dvd
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{k : ℕ}
(hf : multiplicity.Finite a b)
:
@[simp]
theorem
multiplicity.Finite.not_of_isUnit_left
{α : Type u_1}
[Monoid α]
{a : α}
(b : α)
(ha : IsUnit a)
:
@[simp]
@[simp]
theorem
multiplicity.Finite.one_right
{α : Type u_1}
[Monoid α]
{a : α}
(ha : multiplicity.Finite a 1)
:
multiplicity a 1 = 0
theorem
multiplicity.Finite.not_of_unit_left
{α : Type u_1}
[Monoid α]
(a : α)
(u : αˣ)
:
¬multiplicity.Finite (↑u) a
theorem
emultiplicity_eq_zero
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
emultiplicity a b = 0 ↔ ¬a ∣ b
theorem
multiplicity_eq_zero
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
multiplicity a b = 0 ↔ ¬a ∣ b
theorem
emultiplicity_ne_zero
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
emultiplicity a b ≠ 0 ↔ a ∣ b
theorem
multiplicity_ne_zero
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
multiplicity a b ≠ 0 ↔ a ∣ b
theorem
multiplicity.Finite.exists_eq_pow_mul_and_not_dvd
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(hfin : multiplicity.Finite a b)
:
theorem
emultiplicity_le_emultiplicity_iff
{α : Type u_1}
{β : Type u_2}
[Monoid α]
[Monoid β]
{a : α}
{b : α}
{c : β}
{d : β}
:
emultiplicity a b ≤ emultiplicity c d ↔ ∀ (n : ℕ), a ^ n ∣ b → c ^ n ∣ d
theorem
multiplicity.Finite.multiplicity_le_multiplicity_iff
{α : Type u_1}
{β : Type u_2}
[Monoid α]
[Monoid β]
{a : α}
{b : α}
{c : β}
{d : β}
(hab : multiplicity.Finite a b)
(hcd : multiplicity.Finite c d)
:
multiplicity a b ≤ multiplicity c d ↔ ∀ (n : ℕ), a ^ n ∣ b → c ^ n ∣ d
theorem
le_emultiplicity_map
{α : Type u_1}
{β : Type u_2}
[Monoid α]
[Monoid β]
{F : Type u_3}
[FunLike F α β]
[MonoidHomClass F α β]
(f : F)
{a : α}
{b : α}
:
emultiplicity a b ≤ emultiplicity (f a) (f b)
theorem
emultiplicity_map_eq
{α : Type u_1}
{β : Type u_2}
[Monoid α]
[Monoid β]
{F : Type u_3}
[EquivLike F α β]
[MulEquivClass F α β]
(f : F)
{a : α}
{b : α}
:
emultiplicity (f a) (f b) = emultiplicity a b
theorem
multiplicity_map_eq
{α : Type u_1}
{β : Type u_2}
[Monoid α]
[Monoid β]
{F : Type u_3}
[EquivLike F α β]
[MulEquivClass F α β]
(f : F)
{a : α}
{b : α}
:
multiplicity (f a) (f b) = multiplicity a b
theorem
emultiplicity_le_emultiplicity_of_dvd_right
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{c : α}
(h : b ∣ c)
:
emultiplicity a b ≤ emultiplicity a c
theorem
emultiplicity_eq_of_associated_right
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{c : α}
(h : Associated b c)
:
emultiplicity a b = emultiplicity a c
theorem
multiplicity_eq_of_associated_right
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
{c : α}
(h : Associated b c)
:
multiplicity a b = multiplicity a c
theorem
dvd_of_emultiplicity_pos
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(h : 0 < emultiplicity a b)
:
a ∣ b
theorem
dvd_of_multiplicity_pos
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
(h : 0 < multiplicity a b)
:
a ∣ b
theorem
dvd_iff_multiplicity_pos
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
0 < multiplicity a b ↔ a ∣ b
theorem
dvd_iff_emultiplicity_pos
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
0 < emultiplicity a b ↔ a ∣ b
theorem
Dvd.multiplicity_pos
{α : Type u_1}
[Monoid α]
{a : α}
{b : α}
:
a ∣ b → 0 < multiplicity a b
Alias of the reverse direction of dvd_iff_multiplicity_pos
.
theorem
multiplicity.Finite.mul_right
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
{c : α}
(hf : multiplicity.Finite a (b * c))
:
theorem
emultiplicity_of_isUnit_right
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
(ha : ¬IsUnit a)
(hb : IsUnit b)
:
emultiplicity a b = 0
theorem
multiplicity_of_isUnit_right
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
(ha : ¬IsUnit a)
(hb : IsUnit b)
:
multiplicity a b = 0
theorem
emultiplicity_of_one_right
{α : Type u_1}
[CommMonoid α]
{a : α}
(ha : ¬IsUnit a)
:
emultiplicity a 1 = 0
theorem
multiplicity_of_one_right
{α : Type u_1}
[CommMonoid α]
{a : α}
(ha : ¬IsUnit a)
:
multiplicity a 1 = 0
theorem
emultiplicity_of_unit_right
{α : Type u_1}
[CommMonoid α]
{a : α}
(ha : ¬IsUnit a)
(u : αˣ)
:
emultiplicity a ↑u = 0
theorem
multiplicity_of_unit_right
{α : Type u_1}
[CommMonoid α]
{a : α}
(ha : ¬IsUnit a)
(u : αˣ)
:
multiplicity a ↑u = 0
theorem
emultiplicity_le_emultiplicity_of_dvd_left
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
{c : α}
(hdvd : a ∣ b)
:
emultiplicity b c ≤ emultiplicity a c
theorem
emultiplicity_eq_of_associated_left
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
{c : α}
(h : Associated a b)
:
emultiplicity b c = emultiplicity a c
theorem
multiplicity_eq_of_associated_left
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
{c : α}
(h : Associated a b)
:
multiplicity b c = multiplicity a c
theorem
emultiplicity_mk_eq_emultiplicity
{α : Type u_1}
[CommMonoid α]
{a : α}
{b : α}
:
emultiplicity (Associates.mk a) (Associates.mk b) = emultiplicity a b
theorem
multiplicity.Finite.ne_zero
{α : Type u_1}
[MonoidWithZero α]
{a : α}
{b : α}
(h : multiplicity.Finite a b)
:
b ≠ 0
@[simp]
@[simp]
theorem
emultiplicity_zero_eq_zero_of_ne_zero
{α : Type u_1}
[MonoidWithZero α]
(a : α)
(ha : a ≠ 0)
:
emultiplicity 0 a = 0
@[simp]
theorem
multiplicity_zero_eq_zero_of_ne_zero
{α : Type u_1}
[MonoidWithZero α]
(a : α)
(ha : a ≠ 0)
:
multiplicity 0 a = 0
theorem
multiplicity.Finite.or_of_add
{α : Type u_1}
[Semiring α]
{p : α}
{a : α}
{b : α}
(hf : multiplicity.Finite p (a + b))
:
multiplicity.Finite p a ∨ multiplicity.Finite p b
theorem
min_le_emultiplicity_add
{α : Type u_1}
[Semiring α]
{p : α}
{a : α}
{b : α}
:
emultiplicity p a ⊓ emultiplicity p b ≤ emultiplicity p (a + b)
@[simp]
theorem
multiplicity.Finite.neg_iff
{α : Type u_1}
[Ring α]
{a : α}
{b : α}
:
multiplicity.Finite a (-b) ↔ multiplicity.Finite a b
theorem
multiplicity.Finite.neg
{α : Type u_1}
[Ring α]
{a : α}
{b : α}
:
multiplicity.Finite a b → multiplicity.Finite a (-b)
Alias of the reverse direction of multiplicity.Finite.neg_iff
.
@[simp]
theorem
emultiplicity_neg
{α : Type u_1}
[Ring α]
(a : α)
(b : α)
:
emultiplicity a (-b) = emultiplicity a b
@[simp]
theorem
multiplicity_neg
{α : Type u_1}
[Ring α]
(a : α)
(b : α)
:
multiplicity a (-b) = multiplicity a b
theorem
emultiplicity_add_of_gt
{α : Type u_1}
[Ring α]
{p : α}
{a : α}
{b : α}
(h : emultiplicity p b < emultiplicity p a)
:
emultiplicity p (a + b) = emultiplicity p b
theorem
multiplicity.Finite.multiplicity_add_of_gt
{α : Type u_1}
[Ring α]
{p : α}
{a : α}
{b : α}
(hf : multiplicity.Finite p b)
(h : multiplicity p b < multiplicity p a)
:
multiplicity p (a + b) = multiplicity p b
theorem
emultiplicity_sub_of_gt
{α : Type u_1}
[Ring α]
{p : α}
{a : α}
{b : α}
(h : emultiplicity p b < emultiplicity p a)
:
emultiplicity p (a - b) = emultiplicity p b
theorem
multiplicity_sub_of_gt
{α : Type u_1}
[Ring α]
{p : α}
{a : α}
{b : α}
(h : multiplicity p b < multiplicity p a)
(hfin : multiplicity.Finite p b)
:
multiplicity p (a - b) = multiplicity p b
theorem
emultiplicity_add_eq_min
{α : Type u_1}
[Ring α]
{p : α}
{a : α}
{b : α}
(h : emultiplicity p a ≠ emultiplicity p b)
:
emultiplicity p (a + b) = emultiplicity p a ⊓ emultiplicity p b
theorem
multiplicity_add_eq_min
{α : Type u_1}
[Ring α]
{p : α}
{a : α}
{b : α}
(ha : multiplicity.Finite p a)
(hb : multiplicity.Finite p b)
(h : multiplicity p a ≠ multiplicity p b)
:
multiplicity p (a + b) = multiplicity p a ⊓ multiplicity p b
theorem
Prime.multiplicity_finite_mul
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
{a : α}
{b : α}
(hp : Prime p)
:
multiplicity.Finite p a → multiplicity.Finite p b → multiplicity.Finite p (a * b)
theorem
multiplicity.Finite.mul_iff
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
{a : α}
{b : α}
(hp : Prime p)
:
multiplicity.Finite p (a * b) ↔ multiplicity.Finite p a ∧ multiplicity.Finite p b
theorem
multiplicity.Finite.pow
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
{a : α}
(hp : Prime p)
(hfin : multiplicity.Finite p a)
{k : ℕ}
:
multiplicity.Finite p (a ^ k)
@[simp]
@[simp]
theorem
multiplicity.Finite.emultiplicity_self
{α : Type u_1}
[CancelCommMonoidWithZero α]
{a : α}
(hfin : multiplicity.Finite a a)
:
emultiplicity a a = 1
theorem
multiplicity_mul
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
{a : α}
{b : α}
(hp : Prime p)
(hfin : multiplicity.Finite p (a * b))
:
multiplicity p (a * b) = multiplicity p a + multiplicity p b
theorem
emultiplicity_mul
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
{a : α}
{b : α}
(hp : Prime p)
:
emultiplicity p (a * b) = emultiplicity p a + emultiplicity p b
theorem
Finset.emultiplicity_prod
{α : Type u_1}
[CancelCommMonoidWithZero α]
{β : Type u_3}
{p : α}
(hp : Prime p)
(s : Finset β)
(f : β → α)
:
emultiplicity p (∏ x ∈ s, f x) = ∑ x ∈ s, emultiplicity p (f x)
theorem
emultiplicity_pow
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
{a : α}
(hp : Prime p)
{k : ℕ}
:
emultiplicity p (a ^ k) = ↑k * emultiplicity p a
theorem
multiplicity.Finite.multiplicity_pow
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
{a : α}
(hp : Prime p)
(ha : multiplicity.Finite p a)
{k : ℕ}
:
multiplicity p (a ^ k) = k * multiplicity p a
theorem
emultiplicity_pow_self
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
(h0 : p ≠ 0)
(hu : ¬IsUnit p)
(n : ℕ)
:
emultiplicity p (p ^ n) = ↑n
theorem
multiplicity_pow_self
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
(h0 : p ≠ 0)
(hu : ¬IsUnit p)
(n : ℕ)
:
multiplicity p (p ^ n) = n
theorem
emultiplicity_pow_self_of_prime
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
(hp : Prime p)
(n : ℕ)
:
emultiplicity p (p ^ n) = ↑n
theorem
multiplicity_pow_self_of_prime
{α : Type u_1}
[CancelCommMonoidWithZero α]
{p : α}
(hp : Prime p)
(n : ℕ)
:
multiplicity p (p ^ n) = n
theorem
multiplicity_eq_zero_of_coprime
{p : ℕ}
{a : ℕ}
{b : ℕ}
(hp : p ≠ 1)
(hle : multiplicity p a ≤ multiplicity p b)
(hab : a.Coprime b)
:
multiplicity p a = 0
theorem
Int.multiplicity_finite_iff_natAbs_finite
{a : ℤ}
{b : ℤ}
:
multiplicity.Finite a b ↔ multiplicity.Finite a.natAbs b.natAbs
Equations
- x✝.decidableMultiplicityFinite x = decidable_of_iff' (x✝ ≠ 1 ∧ 0 < x) ⋯
Equations
- x✝.decidableMultiplicityFinite x = decidable_of_iff' (x✝.natAbs ≠ 1 ∧ x ≠ 0) ⋯