Documentation

Mathlib.Topology.MetricSpace.Pseudo.Constructions

Products of pseudometric spaces and other constructions #

This file constructs the supremum distance on binary products of pseudometric spaces and provides instances for type synonyms.

@[reducible, inline]
abbrev PseudoMetricSpace.induced {α : Type u_3} {β : Type u_4} (f : αβ) (m : PseudoMetricSpace β) :

Pseudometric space structure pulled back by a function.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def IsInducing.comapPseudoMetricSpace {α : Type u_3} {β : Type u_4} [TopologicalSpace α] [m : PseudoMetricSpace β] {f : αβ} (hf : IsInducing f) :

    Pull back a pseudometric space structure by an inducing map. This is a version of PseudoMetricSpace.induced useful in case if the domain already has a TopologicalSpace structure.

    Equations
    Instances For
      @[deprecated IsInducing.comapPseudoMetricSpace]
      def Inducing.comapPseudoMetricSpace {α : Type u_3} {β : Type u_4} [TopologicalSpace α] [m : PseudoMetricSpace β] {f : αβ} (hf : IsInducing f) :

      Alias of IsInducing.comapPseudoMetricSpace.


      Pull back a pseudometric space structure by an inducing map. This is a version of PseudoMetricSpace.induced useful in case if the domain already has a TopologicalSpace structure.

      Equations
      Instances For
        def IsUniformInducing.comapPseudoMetricSpace {α : Type u_3} {β : Type u_4} [UniformSpace α] [m : PseudoMetricSpace β] (f : αβ) (h : IsUniformInducing f) :

        Pull back a pseudometric space structure by a uniform inducing map. This is a version of PseudoMetricSpace.induced useful in case if the domain already has a UniformSpace structure.

        Equations
        Instances For
          @[deprecated IsUniformInducing.comapPseudoMetricSpace]
          def UniformInducing.comapPseudoMetricSpace {α : Type u_3} {β : Type u_4} [UniformSpace α] [m : PseudoMetricSpace β] (f : αβ) (h : IsUniformInducing f) :

          Alias of IsUniformInducing.comapPseudoMetricSpace.


          Pull back a pseudometric space structure by a uniform inducing map. This is a version of PseudoMetricSpace.induced useful in case if the domain already has a UniformSpace structure.

          Equations
          Instances For
            Equations
            theorem Subtype.dist_eq {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (x : Subtype p) (y : Subtype p) :
            dist x y = dist x y
            theorem Subtype.nndist_eq {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (x : Subtype p) (y : Subtype p) :
            nndist x y = nndist x y
            Equations
            Equations
            @[simp]
            theorem MulOpposite.dist_op {α : Type u_1} [PseudoMetricSpace α] (x : α) (y : α) :
            @[simp]
            theorem AddOpposite.dist_op {α : Type u_1} [PseudoMetricSpace α] (x : α) (y : α) :
            @[simp]
            theorem MulOpposite.nndist_op {α : Type u_1} [PseudoMetricSpace α] (x : α) (y : α) :
            @[simp]
            theorem AddOpposite.nndist_op {α : Type u_1} [PseudoMetricSpace α] (x : α) (y : α) :
            theorem NNReal.dist_eq (a : NNReal) (b : NNReal) :
            dist a b = |a - b|
            theorem NNReal.nndist_eq (a : NNReal) (b : NNReal) :
            nndist a b = (a - b) (b - a)
            @[simp]
            @[simp]
            theorem NNReal.le_add_nndist (a : NNReal) (b : NNReal) :
            a b + nndist a b
            theorem NNReal.ball_zero_eq_Ico (c : ) :
            Metric.ball 0 c = Set.Ico 0 c.toNNReal
            theorem NNReal.closedBall_zero_eq_Icc {c : } (c_nn : 0 c) :
            Metric.closedBall 0 c = Set.Icc 0 c.toNNReal
            Equations
            theorem ULift.dist_eq {β : Type u_2} [PseudoMetricSpace β] (x : ULift.{u_3, u_2} β) (y : ULift.{u_3, u_2} β) :
            dist x y = dist x.down y.down
            theorem ULift.nndist_eq {β : Type u_2} [PseudoMetricSpace β] (x : ULift.{u_3, u_2} β) (y : ULift.{u_3, u_2} β) :
            nndist x y = nndist x.down y.down
            @[simp]
            theorem ULift.dist_up_up {β : Type u_2} [PseudoMetricSpace β] (x : β) (y : β) :
            dist { down := x } { down := y } = dist x y
            @[simp]
            theorem ULift.nndist_up_up {β : Type u_2} [PseudoMetricSpace β] (x : β) (y : β) :
            nndist { down := x } { down := y } = nndist x y
            noncomputable instance Prod.pseudoMetricSpaceMax {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] :
            Equations
            theorem Prod.dist_eq {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x : α × β} {y : α × β} :
            dist x y = dist x.1 y.1 dist x.2 y.2
            @[simp]
            theorem dist_prod_same_left {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x : α} {y₁ : β} {y₂ : β} :
            dist (x, y₁) (x, y₂) = dist y₁ y₂
            @[simp]
            theorem dist_prod_same_right {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x₁ : α} {x₂ : α} {y : β} :
            dist (x₁, y) (x₂, y) = dist x₁ x₂
            theorem ball_prod_same {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] (x : α) (y : β) (r : ) :
            theorem closedBall_prod_same {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] (x : α) (y : β) (r : ) :
            theorem sphere_prod {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] (x : α × β) (r : ) :
            theorem uniformContinuous_dist {α : Type u_1} [PseudoMetricSpace α] :
            UniformContinuous fun (p : α × α) => dist p.1 p.2
            theorem UniformContinuous.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [UniformSpace β] {f : βα} {g : βα} (hf : UniformContinuous f) (hg : UniformContinuous g) :
            UniformContinuous fun (b : β) => dist (f b) (g b)
            theorem continuous_dist {α : Type u_1} [PseudoMetricSpace α] :
            Continuous fun (p : α × α) => dist p.1 p.2
            theorem Continuous.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f : βα} {g : βα} (hf : Continuous f) (hg : Continuous g) :
            Continuous fun (b : β) => dist (f b) (g b)
            theorem Filter.Tendsto.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] {f : βα} {g : βα} {x : Filter β} {a : α} {b : α} (hf : Filter.Tendsto f x (nhds a)) (hg : Filter.Tendsto g x (nhds b)) :
            Filter.Tendsto (fun (x : β) => dist (f x) (g x)) x (nhds (dist a b))
            theorem continuous_iff_continuous_dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f : βα} :
            Continuous f Continuous fun (x : β × β) => dist (f x.1) (f x.2)
            theorem uniformContinuous_nndist {α : Type u_1} [PseudoMetricSpace α] :
            UniformContinuous fun (p : α × α) => nndist p.1 p.2
            theorem UniformContinuous.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [UniformSpace β] {f : βα} {g : βα} (hf : UniformContinuous f) (hg : UniformContinuous g) :
            UniformContinuous fun (b : β) => nndist (f b) (g b)
            theorem continuous_nndist {α : Type u_1} [PseudoMetricSpace α] :
            Continuous fun (p : α × α) => nndist p.1 p.2
            theorem Continuous.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f : βα} {g : βα} (hf : Continuous f) (hg : Continuous g) :
            Continuous fun (b : β) => nndist (f b) (g b)
            theorem Filter.Tendsto.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] {f : βα} {g : βα} {x : Filter β} {a : α} {b : α} (hf : Filter.Tendsto f x (nhds a)) (hg : Filter.Tendsto g x (nhds b)) :
            Filter.Tendsto (fun (x : β) => nndist (f x) (g x)) x (nhds (nndist a b))