H[X, X * Y] = H[X, Y].
H[X, X + Y] = H[X, Y]
H[X, Y * X] = H[X, Y]
H[X, Y + X] = H[X, Y]
H[Y * X, Y] = H[X, Y]
H[Y + X, Y] = H[X, Y]
H[X * Y, Y] = H[X, Y]
H[X + Y, Y] = H[X, Y]
H[X, Y⁻¹] = H[X, Y]
H[X, -Y] = H[X, Y]
H[X⁻¹, Y] = H[X, Y]
H[-X, Y] = H[X, Y]
H[X, X / Y] = H[X, Y]
H[X, X - Y] = H[X, Y]
H[X, Y / X] = H[X, Y]
H[X, Y - X] = H[X, Y]
H[Y / X, Y] = H[X, Y]
H[Y - X, Y] = H[X, Y]
H[X / Y, Y] = H[X, Y]
H[X - Y, Y] = H[X, Y]
If X is G-valued, then H[X⁻¹]=H[X].
If X is G-valued, then H[-X]=H[X].
H[X / Y] = H[Y / X]
H[X - Y] = H[Y - X]
max(H[X | Z], H[Y | Z]) - I[X : Y | Z] ≤ H[X / Y | Z]
max(H[X | Z], H[Y | Z]) - I[X : Y | Z] ≤ H[X - Y | Z]
H[Y * X | Y] = H[X | Y]
H[Y + X | Y] = H[X | Y]
H[X * Y | Y] = H[X | Y]
H[X + Y | Y] = H[X | Y]
H[Y / X | Y] = H[X | Y]
H[Y - X | Y] = H[X | Y]
H[X / Y | Y] = H[X | Y]
H[X - Y | Y] = H[X | Y]
I[X : X * Y] = H[X * Y] - H[Y] iff X, Y are independent.
I[X : X + Y] = H[X + Y] - H[Y] iff X, Y are independent.
H[X] - I[X : Y] ≤ H[X * Y]
H[X] - I[X : Y] ≤ H[X + Y]
H[Y] - I[X : Y] ≤ H[X * Y]
H[Y] - I[X : Y] ≤ H[X + Y]
H[X] - I[X : Y] ≤ H[X / Y]
H[X] - I[X : Y] ≤ H[X - Y]
H[Y] - I[X : Y] ≤ H[X / Y]
H[Y] - I[X : Y] ≤ H[X - Y]
max(H[X], H[Y]) - I[X : Y] ≤ H[X * Y]
max(H[X], H[Y]) - I[X : Y] ≤ H[X + Y]
max(H[X], H[Y]) - I[X : Y] ≤ H[X / Y]
max(H[X], H[Y]) - I[X : Y] ≤ H[X - Y]
max(H[X | Z], H[Y | Z]) - I[X : Y | Z] ≤ H[X * Y | Z]
max(H[X | Z], H[Y | Z]) - I[X : Y | Z] ≤ H[X + Y | Z]
If X, Y are independent, then max(H[X], H[Y]) ≤ H[X * Y].
If X, Y are independent, then max(H[X], H[Y]) ≤ H[X + Y]
If X, Y are independent, then max(H[X], H[Y]) ≤ H[X / Y].
If X, Y are independent, then max(H[X], H[Y]) ≤ H[X - Y].
If X₁, ..., Xₙ are independent and s ⊆ {1, ..., n}, then for all i ∈ s,
H[Xᵢ] ≤ H[∏ j ∈ s, Xⱼ].
If X₁, ..., Xₙ are independent and s ⊆ {1, ..., n}, then for all i ∈ s,
H[Xᵢ] ≤ H[∑ j ∈ s, Xⱼ].