H[X, X * Y] = H[X, Y]
.
H[X, X + Y] = H[X, Y]
H[X, Y * X] = H[X, Y]
H[X, Y + X] = H[X, Y]
H[Y * X, Y] = H[X, Y]
H[Y + X, Y] = H[X, Y]
H[X * Y, Y] = H[X, Y]
H[X + Y, Y] = H[X, Y]
H[X, Y⁻¹] = H[X, Y]
H[X, -Y] = H[X, Y]
H[X⁻¹, Y] = H[X, Y]
H[-X, Y] = H[X, Y]
H[X, X / Y] = H[X, Y]
H[X, X - Y] = H[X, Y]
H[X, Y / X] = H[X, Y]
H[X, Y - X] = H[X, Y]
H[Y / X, Y] = H[X, Y]
H[Y - X, Y] = H[X, Y]
H[X / Y, Y] = H[X, Y]
H[X - Y, Y] = H[X, Y]
If X
is G
-valued, then H[X⁻¹]=H[X]
.
If X
is G
-valued, then H[-X]=H[X]
.
H[X / Y] = H[Y / X]
H[X - Y] = H[Y - X]
max(H[X | Z], H[Y | Z]) - I[X : Y | Z] ≤ H[X / Y | Z]
max(H[X | Z], H[Y | Z]) - I[X : Y | Z] ≤ H[X - Y | Z]
H[Y * X | Y] = H[X | Y]
H[Y + X | Y] = H[X | Y]
H[X * Y | Y] = H[X | Y]
H[X + Y | Y] = H[X | Y]
H[Y / X | Y] = H[X | Y]
H[Y - X | Y] = H[X | Y]
H[X / Y | Y] = H[X | Y]
H[X - Y | Y] = H[X | Y]
I[X : X * Y] = H[X * Y] - H[Y]
iff X, Y
are independent.
I[X : X + Y] = H[X + Y] - H[Y]
iff X, Y
are independent.
H[X] - I[X : Y] ≤ H[X * Y]
H[X] - I[X : Y] ≤ H[X + Y]
H[Y] - I[X : Y] ≤ H[X * Y]
H[Y] - I[X : Y] ≤ H[X + Y]
H[X] - I[X : Y] ≤ H[X / Y]
H[X] - I[X : Y] ≤ H[X - Y]
H[Y] - I[X : Y] ≤ H[X / Y]
H[Y] - I[X : Y] ≤ H[X - Y]
max(H[X], H[Y]) - I[X : Y] ≤ H[X * Y]
max(H[X], H[Y]) - I[X : Y] ≤ H[X + Y]
max(H[X], H[Y]) - I[X : Y] ≤ H[X / Y]
max(H[X], H[Y]) - I[X : Y] ≤ H[X - Y]
max(H[X | Z], H[Y | Z]) - I[X : Y | Z] ≤ H[X * Y | Z]
max(H[X | Z], H[Y | Z]) - I[X : Y | Z] ≤ H[X + Y | Z]
If X, Y
are independent, then max(H[X], H[Y]) ≤ H[X * Y]
.
If X, Y
are independent, then max(H[X], H[Y]) ≤ H[X + Y]
If X, Y
are independent, then max(H[X], H[Y]) ≤ H[X / Y]
.
If X, Y
are independent, then max(H[X], H[Y]) ≤ H[X - Y]
.
If X₁, ..., Xₙ
are independent and s ⊆ {1, ..., n}
, then for all i ∈ s
,
H[Xᵢ] ≤ H[∏ j ∈ s, Xⱼ]
.
If X₁, ..., Xₙ
are independent and s ⊆ {1, ..., n}
, then for all i ∈ s
,
H[Xᵢ] ≤ H[∑ j ∈ s, Xⱼ]
.