Products of finite measures and probability measures #
noncomputable def
MeasureTheory.FiniteMeasure.prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
:
MeasureTheory.FiniteMeasure (α × β)
The binary product of finite measures.
Equations
- μ.prod ν = ⟨(↑μ).prod ↑ν, ⋯⟩
Instances For
@[simp]
theorem
MeasureTheory.FiniteMeasure.toMeasure_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
:
↑(μ.prod ν) = (↑μ).prod ↑ν
theorem
MeasureTheory.FiniteMeasure.prod_apply
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
(s : Set (α × β))
(s_mble : MeasurableSet s)
:
theorem
MeasureTheory.FiniteMeasure.prod_apply_symm
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
(s : Set (α × β))
(s_mble : MeasurableSet s)
:
theorem
MeasureTheory.FiniteMeasure.prod_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
(s : Set α)
(t : Set β)
:
theorem
MeasureTheory.FiniteMeasure.mass_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
:
theorem
MeasureTheory.FiniteMeasure.zero_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(ν : MeasureTheory.FiniteMeasure β)
:
theorem
MeasureTheory.FiniteMeasure.prod_zero
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
:
μ.prod 0 = 0
@[simp]
theorem
MeasureTheory.FiniteMeasure.map_fst_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
:
@[simp]
theorem
MeasureTheory.FiniteMeasure.map_snd_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
:
theorem
MeasureTheory.FiniteMeasure.map_prod_map
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
{α' : Type u_3}
[MeasurableSpace α']
{β' : Type u_4}
[MeasurableSpace β']
{f : α → α'}
{g : β → β'}
(f_mble : Measurable f)
(g_mble : Measurable g)
:
theorem
MeasureTheory.FiniteMeasure.prod_apply_null
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
{s : Set (α × β)}
(hs : MeasurableSet s)
:
theorem
MeasureTheory.FiniteMeasure.measure_ae_null_of_prod_null
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
{s : Set (α × β)}
(h : (μ.prod ν) s = 0)
:
theorem
MeasureTheory.FiniteMeasure.prod_swap
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.FiniteMeasure α)
(ν : MeasureTheory.FiniteMeasure β)
:
(μ.prod ν).map Prod.swap = ν.prod μ
noncomputable def
MeasureTheory.ProbabilityMeasure.prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
:
The binary product of probability measures.
Equations
- μ.prod ν = ⟨(↑μ).prod ↑ν, ⋯⟩
Instances For
@[simp]
theorem
MeasureTheory.ProbabilityMeasure.toMeasure_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
:
↑(μ.prod ν) = (↑μ).prod ↑ν
theorem
MeasureTheory.ProbabilityMeasure.prod_apply
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
(s : Set (α × β))
(s_mble : MeasurableSet s)
:
theorem
MeasureTheory.ProbabilityMeasure.prod_apply_symm
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
(s : Set (α × β))
(s_mble : MeasurableSet s)
:
theorem
MeasureTheory.ProbabilityMeasure.prod_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
(s : Set α)
(t : Set β)
:
@[simp]
theorem
MeasureTheory.ProbabilityMeasure.map_fst_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
:
(μ.prod ν).map ⋯ = μ
@[simp]
theorem
MeasureTheory.ProbabilityMeasure.map_snd_prod
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
:
(μ.prod ν).map ⋯ = ν
theorem
MeasureTheory.ProbabilityMeasure.map_prod_map
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
{α' : Type u_3}
[MeasurableSpace α']
{β' : Type u_4}
[MeasurableSpace β']
{f : α → α'}
{g : β → β'}
(f_mble : Measurable f)
(g_mble : Measurable g)
:
(μ.map ⋯).prod (ν.map ⋯) = (μ.prod ν).map ⋯
theorem
MeasureTheory.ProbabilityMeasure.prod_apply_null
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
{s : Set (α × β)}
(hs : MeasurableSet s)
:
theorem
MeasureTheory.ProbabilityMeasure.measure_ae_null_of_prod_null
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
{s : Set (α × β)}
(h : (μ.prod ν) s = 0)
:
theorem
MeasureTheory.ProbabilityMeasure.prod_swap
{α : Type u_1}
[MeasurableSpace α]
{β : Type u_2}
[MeasurableSpace β]
(μ : MeasureTheory.ProbabilityMeasure α)
(ν : MeasureTheory.ProbabilityMeasure β)
:
(μ.prod ν).map ⋯ = ν.prod μ