Documentation

PFR.ForMathlib.FiniteMeasureProd

Products of finite measures and probability measures #

The binary product of finite measures.

Equations
  • μ.prod ν = (↑μ).prod ν,
Instances For
    @[simp]
    theorem MeasureTheory.FiniteMeasure.toMeasure_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) :
    (μ.prod ν) = (↑μ).prod ν
    theorem MeasureTheory.FiniteMeasure.prod_apply {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) (s : Set (α × β)) (s_mble : MeasurableSet s) :
    (μ.prod ν) s = (∫⁻ (x : α), ν (Prod.mk x ⁻¹' s)μ).toNNReal
    theorem MeasureTheory.FiniteMeasure.prod_apply_symm {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) (s : Set (α × β)) (s_mble : MeasurableSet s) :
    (μ.prod ν) s = (∫⁻ (y : β), μ ((fun (x : α) => (x, y)) ⁻¹' s)ν).toNNReal
    theorem MeasureTheory.FiniteMeasure.prod_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) (s : Set α) (t : Set β) :
    (μ.prod ν) (s ×ˢ t) = μ s * ν t
    theorem MeasureTheory.FiniteMeasure.mass_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) :
    (μ.prod ν).mass = μ.mass * ν.mass
    @[simp]
    theorem MeasureTheory.FiniteMeasure.map_fst_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) :
    (μ.prod ν).map Prod.fst = ν Set.univ μ
    @[simp]
    theorem MeasureTheory.FiniteMeasure.map_snd_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) :
    (μ.prod ν).map Prod.snd = μ Set.univ ν
    theorem MeasureTheory.FiniteMeasure.map_prod_map {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) {α' : Type u_3} [MeasurableSpace α'] {β' : Type u_4} [MeasurableSpace β'] {f : αα'} {g : ββ'} (f_mble : Measurable f) (g_mble : Measurable g) :
    (μ.map f).prod (ν.map g) = (μ.prod ν).map (Prod.map f g)
    theorem MeasureTheory.FiniteMeasure.prod_apply_null {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) {s : Set (α × β)} (hs : MeasurableSet s) :
    (μ.prod ν) s = 0 (fun (x : α) => ν (Prod.mk x ⁻¹' s)) =ᵐ[μ] 0
    theorem MeasureTheory.FiniteMeasure.measure_ae_null_of_prod_null {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) {s : Set (α × β)} (h : (μ.prod ν) s = 0) :
    (fun (x : α) => ν (Prod.mk x ⁻¹' s)) =ᵐ[μ] 0
    theorem MeasureTheory.FiniteMeasure.prod_swap {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) :
    (μ.prod ν).map Prod.swap = ν.prod μ

    The binary product of probability measures.

    Equations
    • μ.prod ν = (↑μ).prod ν,
    Instances For
      @[simp]
      theorem MeasureTheory.ProbabilityMeasure.toMeasure_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) :
      (μ.prod ν) = (↑μ).prod ν
      theorem MeasureTheory.ProbabilityMeasure.prod_apply {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) (s : Set (α × β)) (s_mble : MeasurableSet s) :
      (μ.prod ν) s = (∫⁻ (x : α), ν (Prod.mk x ⁻¹' s)μ).toNNReal
      theorem MeasureTheory.ProbabilityMeasure.prod_apply_symm {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) (s : Set (α × β)) (s_mble : MeasurableSet s) :
      (μ.prod ν) s = (∫⁻ (y : β), μ ((fun (x : α) => (x, y)) ⁻¹' s)ν).toNNReal
      theorem MeasureTheory.ProbabilityMeasure.prod_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) (s : Set α) (t : Set β) :
      (μ.prod ν) (s ×ˢ t) = μ s * ν t
      theorem MeasureTheory.ProbabilityMeasure.map_prod_map {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) {α' : Type u_3} [MeasurableSpace α'] {β' : Type u_4} [MeasurableSpace β'] {f : αα'} {g : ββ'} (f_mble : Measurable f) (g_mble : Measurable g) :
      (μ.map ).prod (ν.map ) = (μ.prod ν).map
      theorem MeasureTheory.ProbabilityMeasure.prod_apply_null {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) {s : Set (α × β)} (hs : MeasurableSet s) :
      (μ.prod ν) s = 0 (fun (x : α) => ν (Prod.mk x ⁻¹' s)) =ᵐ[μ] 0
      theorem MeasureTheory.ProbabilityMeasure.measure_ae_null_of_prod_null {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) {s : Set (α × β)} (h : (μ.prod ν) s = 0) :
      (fun (x : α) => ν (Prod.mk x ⁻¹' s)) =ᵐ[μ] 0