Documentation

PFR.ForMathlib.Graph

def Set.graph {G : Type u_1} {G' : Type u_2} (f : GG') :
Set (G × G')
Equations
Instances For
    theorem Set.graph_def {G : Type u_1} {G' : Type u_2} (f : GG') :
    Set.graph f = {x : G × G' | ∃ (x_1 : G), (x_1, f x_1) = x}
    theorem Set.card_graph {G : Type u_1} {G' : Type u_2} (f : GG') :
    @[simp]
    theorem Set.mem_graph {G : Type u_1} {G' : Type u_2} {f : GG'} (x : G × G') :
    x Set.graph f f x.1 = x.2
    theorem Set.fst_injOn_graph {G : Type u_1} {G' : Type u_2} (f : GG') :
    Set.InjOn Prod.fst (Set.graph f)
    @[simp]
    theorem Set.image_fst_graph {G : Type u_1} {G' : Type u_2} {f : GG'} :
    Prod.fst '' Set.graph f = Set.univ
    @[simp]
    theorem Set.image_snd_graph {G : Type u_1} {G' : Type u_2} {f : GG'} :
    Prod.snd '' Set.graph f = f '' Set.univ
    theorem Set.graph_comp {A : Type u_3} {B : Type u_4} {C : Type u_5} {f : AB} (g : BC) :
    Set.graph (g f) = (fun (p : A × B) => (p.1, g p.2)) '' Set.graph f
    theorem Set.graph_nonempty {G : Type u_1} {G' : Type u_2} [Nonempty G] (f : GG') :
    (Set.graph f).Nonempty
    theorem Set.graph_add {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddCommGroup G'] {f : G →+ G'} {c : G × G'} :
    (fun (x : G × G') => c + x) '' Set.graph f = {x : G × G' | ∃ (g : G), (g, f g + (c.2 - f c.1)) = x}
    def Set.equivFilterGraph {G : Type u_3} {G' : Type u_4} [AddCommGroup G] [Fintype G] [AddCommGroup G'] [Fintype G'] [DecidableEq G] [DecidableEq G'] (f : GG') :
    let A := .toFinset; { x : (G × G') × G × G' // x Finset.filter (fun (x : (G × G') × G × G') => match x with | (a, a') => a + a' A) (A ×ˢ A) } {x : G × G | f (x.1 + x.2) = f x.1 + f x.2}
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For