If G
is a rank d
free ℤ
-module, then G/nG
is a finite group of cardinality n ^ d
.
@[reducible, inline]
modN G n
denotes the quotient of G
by multiples of n
Equations
- modN G n = (G ⧸ LinearMap.range ((LinearMap.lsmul ℤ G) ↑n))
Instances For
Equations
- instModuleZModModN = QuotientAddGroup.zmodModule ⋯
noncomputable def
modNBasis
{G : Type u_1}
[AddCommGroup G]
[Module.Free ℤ G]
{n : ℕ}
[NeZero n]
:
Basis (Module.Free.ChooseBasisIndex ℤ G) (ZMod n) (modN G n)
Given a free module G
over ℤ
, construct the corresponding basis
of G / ⟨n⟩
over ℤ / nℤ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
modN.instModuleFinite
{G : Type u_1}
[AddCommGroup G]
[Module.Free ℤ G]
{n : ℕ}
[NeZero n]
[Module.Finite ℤ G]
:
Module.Finite (ZMod n) (modN G n)
Equations
- ⋯ = ⋯
instance
modN.instFinite
{G : Type u_1}
[AddCommGroup G]
[Module.Free ℤ G]
{n : ℕ}
[NeZero n]
[Module.Finite ℤ G]
:
Equations
- ⋯ = ⋯
@[simp]
theorem
card_modN
(G : Type u_1)
[AddCommGroup G]
[Module.Free ℤ G]
(n : ℕ)
[NeZero n]
[Module.Finite ℤ G]
: