Documentation

PFR.ForMathlib.GroupQuot

If G is a rank d free -module, then G/nG is a finite group of cardinality n ^ d.

@[reducible, inline]
abbrev modN (G : Type u_1) [AddCommGroup G] (n : ) :
Type u_1

modN G n denotes the quotient of G by multiples of n

Equations
Instances For
    instance instModuleZModModN {G : Type u_1} [AddCommGroup G] {n : } :
    Module (ZMod n) (modN G n)
    Equations
    noncomputable def modNBasis {G : Type u_1} [AddCommGroup G] [Module.Free G] {n : } [NeZero n] :

    Given a free module G over , construct the corresponding basis of G / ⟨n⟩ over ℤ / nℤ.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • =
      instance modN.instFinite {G : Type u_1} [AddCommGroup G] [Module.Free G] {n : } [NeZero n] [Module.Finite G] :
      Finite (modN G n)
      Equations
      • =
      @[simp]
      theorem card_modN (G : Type u_1) [AddCommGroup G] [Module.Free G] (n : ) [NeZero n] [Module.Finite G] :