Documentation

PFR.Mathlib.MeasureTheory.Constructions.Prod.Basic

theorem MeasureTheory.Measure.map_prod_comap_swap {Ω : Type u_1} {α : Type u_2} {γ : Type u_4} [MeasurableSpace Ω] [MeasurableSpace α] [MeasurableSpace γ] {X : Ωα} {Z : Ωγ} (hX : Measurable X) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) :
MeasureTheory.Measure.comap Prod.swap (MeasureTheory.Measure.map (fun (ω : Ω) => (X ω, Z ω)) μ) = MeasureTheory.Measure.map (fun (ω : Ω) => (Z ω, X ω)) μ

The law of $(X, Z)$ is the image of the law of $(Z,X)$.

theorem MeasureTheory.Measure.prod_apply_singleton {α : Type u_5} {β : Type u_6} :
∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure β) [inst : MeasureTheory.SigmaFinite ν] (x_2 : α × β), (μ.prod ν) {x_2} = μ {x_2.1} * ν {x_2.2}
theorem MeasureTheory.Measure.prod_of_full_measure_finset {α : Type u_2} {β : Type u_3} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} [MeasureTheory.SigmaFinite ν] {A : Finset α} {B : Finset β} (hA : μ (A) = 0) (hB : ν (B) = 0) :
(μ.prod ν) ((A ×ˢ B)) = 0