Documentation

PFR.Mathlib.MeasureTheory.Integral.Lebesgue.Countable

theorem MeasureTheory.lintegral_eq_sum {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : Measure α) (f : αENNReal) [Fintype α] :
∫⁻ (x : α), f x μ = x : α, μ {x} * f x
theorem MeasureTheory.lintegral_eq_tsum {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : Measure α) (f : αENNReal) [Countable α] :
∫⁻ (x : α), f x μ = ∑' (x : α), μ {x} * f x
theorem MeasureTheory.setLIntegral_eq_sum {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : Measure α) (s : Finset α) (f : αENNReal) :
∫⁻ (x : α) in s, f x μ = xs, μ {x} * f x
theorem MeasureTheory.lintegral_eq_single {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : Measure α) (a : α) (f : αENNReal) (ha : ∀ (b : α), b af b = 0) :
∫⁻ (x : α), f x μ = f a * μ {a}