Documentation
PFR
.
Mathlib
.
MeasureTheory
.
Integral
.
Lebesgue
.
Countable
Search
return to top
source
Imports
Init
Mathlib.MeasureTheory.Integral.Lebesgue.Countable
Imported by
MeasureTheory
.
lintegral_eq_sum
MeasureTheory
.
lintegral_eq_tsum
MeasureTheory
.
setLIntegral_eq_sum
MeasureTheory
.
lintegral_eq_single
source
theorem
MeasureTheory
.
lintegral_eq_sum
{
α
:
Type
u_1}
[
MeasurableSpace
α
]
[
MeasurableSingletonClass
α
]
(
μ
:
Measure
α
)
(
f
:
α
→
ENNReal
)
[
Fintype
α
]
:
∫⁻
(
x
:
α
)
,
f
x
∂
μ
=
∑
x
:
α
,
μ
{
x
}
*
f
x
source
theorem
MeasureTheory
.
lintegral_eq_tsum
{
α
:
Type
u_1}
[
MeasurableSpace
α
]
[
MeasurableSingletonClass
α
]
(
μ
:
Measure
α
)
(
f
:
α
→
ENNReal
)
[
Countable
α
]
:
∫⁻
(
x
:
α
)
,
f
x
∂
μ
=
∑'
(
x
:
α
)
,
μ
{
x
}
*
f
x
source
theorem
MeasureTheory
.
setLIntegral_eq_sum
{
α
:
Type
u_1}
[
MeasurableSpace
α
]
[
MeasurableSingletonClass
α
]
(
μ
:
Measure
α
)
(
s
:
Finset
α
)
(
f
:
α
→
ENNReal
)
:
∫⁻
(
x
:
α
)
in
↑
s
,
f
x
∂
μ
=
∑
x
∈
s
,
μ
{
x
}
*
f
x
source
theorem
MeasureTheory
.
lintegral_eq_single
{
α
:
Type
u_1}
[
MeasurableSpace
α
]
[
MeasurableSingletonClass
α
]
(
μ
:
Measure
α
)
(
a
:
α
)
(
f
:
α
→
ENNReal
)
(
ha
:
∀ (
b
:
α
),
b
≠
a
→
f
b
=
0
)
:
∫⁻
(
x
:
α
)
,
f
x
∂
μ
=
f
a
*
μ
{
a
}