Documentation

PFR.Mathlib.MeasureTheory.Measure.Real

theorem MeasureTheory.Measure.ennreal_smul_real_apply {Ω : Type u_4} {x✝ : MeasurableSpace Ω} (c : ENNReal) (μ : Measure Ω) (s : Set Ω) :
(c μ).real s = c.toReal μ.real s
theorem MeasureTheory.Measure.nnreal_smul_real_apply {Ω : Type u_4} {x✝ : MeasurableSpace Ω} (c : NNReal) (μ : Measure Ω) (s : Set Ω) :
(c μ).real s = c μ.real s
theorem MeasureTheory.Measure.comap_real_apply {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} {s : Set α} {f : αβ} (hfi : Function.Injective f) (hf : ∀ (s : Set α), MeasurableSet sMeasurableSet (f '' s)) (μ : Measure β) (hs : MeasurableSet s) :
(comap f μ).real s = μ.real (f '' s)
theorem MeasureTheory.Measure.prod_real_singleton {α : Type u_1} {β : Type u_2} {x✝ : MeasurableSpace α} {x✝¹ : MeasurableSpace β} (μ : Measure α) (ν : Measure β) [SigmaFinite ν] (x : α × β) :
(μ.prod ν).real {x} = μ.real {x.1} * ν.real {x.2}
theorem MeasureTheory.measureReal_preimage_fst_singleton_eq_sum {Ω : Type u_4} {Ω' : Type u_5} {x✝ : MeasurableSpace Ω} {x✝¹ : MeasurableSpace Ω'} [MeasurableSingletonClass Ω] [MeasurableSingletonClass Ω'] [Fintype Ω'] (μ : Measure (Ω × Ω')) [IsFiniteMeasure μ] (x : Ω) :
μ.real (Prod.fst ⁻¹' {x}) = y : Ω', μ.real {(x, y)}
theorem MeasureTheory.measureReal_preimage_snd_singleton_eq_sum {Ω : Type u_4} {Ω' : Type u_5} {x✝ : MeasurableSpace Ω} {x✝¹ : MeasurableSpace Ω'} [MeasurableSingletonClass Ω] [MeasurableSingletonClass Ω'] [Fintype Ω] (μ : Measure (Ω × Ω')) [IsFiniteMeasure μ] (y : Ω') :
μ.real (Prod.snd ⁻¹' {y}) = x : Ω, μ.real {(x, y)}