Documentation

PFR.MultiTauFunctional

The tau functional for multidistance #

Definition of the tau functional and basic facts

Main definitions: #

Main results #

We will frequently be working with finite additive groups with the discrete sigma-algebra.

    Instances
      structure multiRefPackage (G : Type u_1) (Ωₒ : Type u_2) [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] :
      Type (max u_1 u_2)

      A structure that packages all the fixed information in the main argument. See https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Problem.20when.20instances.20are.20inside.20a.20structure for more discussion of the design choices here.

      Instances For
        theorem multiRefPackage.hm {G : Type u_1} {Ωₒ : Type u_2} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (self : multiRefPackage G Ωₒ) :
        self.m 2
        theorem multiRefPackage.htorsion {G : Type u_1} {Ωₒ : Type u_2} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (self : multiRefPackage G Ωₒ) (x : G) :
        self.m x = 0
        theorem multiRefPackage.hprob {G : Type u_1} {Ωₒ : Type u_2} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (self : multiRefPackage G Ωₒ) :
        theorem multiRefPackage.hmeas {G : Type u_1} {Ωₒ : Type u_2} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (self : multiRefPackage G Ωₒ) :
        Measurable self.X₀
        theorem multiRefPackage. {G : Type u_1} {Ωₒ : Type u_2} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (self : multiRefPackage G Ωₒ) :
        0 < self
        noncomputable def multiTau {G : Type u_1} {Ωₒ : Type u_2} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u_3) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) :

        If $(X_i){1 \leq i \leq m}$ is a tuple, we define its $\tau$-functional $$ \tau[ (X_i){1 \leq i \leq m}] := D[(X_i){1 \leq i \leq m}] + \eta \sum{i=1}^m d[X_i; X^0].$$

        Equations
        • multiTau p Ω X = D[X ; ] + p * Finset.univ.sum fun (i : Fin p.m) => d[X i # p.X₀]
        Instances For
          def multiTauMinimizes {G : Type u} {Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) :

          A $\tau$-minimizer is a tuple $(X_i)_{1 \leq i \leq m}$ that minimizes the $\tau$-functional among all tuples of $G$-valued random variables.

          Equations
          Instances For
            theorem multiTau_continuous {G : Type u} {Ωₒ : Type u} [MeasureableFinGroup G] [TopologicalSpace G] [DiscreteTopology G] [BorelSpace G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) :
            Continuous fun (μ : Fin p.mMeasureTheory.ProbabilityMeasure G) => multiTau p (fun (x : Fin p.m) => G) (fun (i : Fin p.m) => MeasureTheory.MeasureSpace.mk (μ i)) fun (x : Fin p.m) => id

            If $G$ is finite, then a $\tau$ is continuous.

            theorem multiTau_min_exists {G : Type u} {Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) :
            ∃ (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG), multiTauMinimizes p Ω X

            If $G$ is finite, then a $\tau$-minimizer exists.

            theorem multiTau_min_sum_le {G : Type u} {Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (hmin : multiTauMinimizes p Ω X) :
            (Finset.univ.sum fun (i : Fin p.m) => d[X i # p.X₀]) 2 * p.m * p⁻¹ * d[p.X₀ # p.X₀]

            If $(X_i){1 \leq i \leq m}$ is a $\tau$-minimizer, then $\sum{i=1}^m d[X_i; X^0] \leq \frac{2m}{\eta} d[X^0; X^0]$.

            theorem sub_multiDistance_le {G : Type u} {Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (hmin : multiTauMinimizes p Ω X) (Ω' : Fin p.mType u) (hΩ' : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω' i)) (X' : (i : Fin p.m) → Ω' iG) :
            D[X ; ] - D[X' ; hΩ'] p * Finset.univ.sum fun (i : Fin p.m) => d[X i # X' i]

            If $(X_i){1 \leq i \leq m}$ is a $\tau$-minimizer, and $k := D[(X_i){1 \leq i \leq m}]$, then for any other tuple $(X'i){1 \leq i \leq m}$, one has $$ k - D[(X'i){1 \leq i \leq m}] \leq \eta \sum_{i=1}^m d[X_i; X'_i].$$

            theorem sub_condMultiDistance_le {G : Type u} {Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (hmin : multiTauMinimizes p Ω X) (Ω' : Fin p.mType u) (hΩ' : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω' i)) (hf : ∀ (i : Fin p.m), MeasureTheory.IsFiniteMeasure MeasureTheory.volume) (X' : (i : Fin p.m) → Ω' iG) {S : Type u} [MeasurableSpace S] (Y : (i : Fin p.m) → Ω' iS) :
            D[X ; ] - D[X' | Y ; hΩ'] p * Finset.univ.sum fun (i : Fin p.m) => d[X i # X' i | Y i]

            If $(X_i){1 \leq i \leq m}$ is a $\tau$-minimizer, and $k := D[(X_i){1 \leq i \leq m}]$, then for any other tuples $(X'i){1 \leq i \leq m}$ and $(Y_i){1 \leq i \leq m}$ with the $X'i$ $G$-valued, one has $$ k - D[(X'i){1 \leq i \leq m} | (Y_i){1 \leq i \leq m}] \leq \eta \sum{i=1}^m d[X_i; X'_i|Y_i].$$

            theorem sub_condMultiDistance_le' {G : Type u} {Ωₒ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ωₒ] (p : multiRefPackage G Ωₒ) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) (hmin : multiTauMinimizes p Ω X) (Ω' : Fin p.mType u) (hΩ' : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω' i)) (hf : ∀ (i : Fin p.m), MeasureTheory.IsFiniteMeasure MeasureTheory.volume) (X' : (i : Fin p.m) → Ω' iG) {S : Type u} [MeasurableSpace S] (Y : (i : Fin p.m) → Ω' iS) (φ : Equiv.Perm (Fin p.m)) :
            D[X ; ] - D[X' | Y ; hΩ'] p * Finset.univ.sum fun (i : Fin p.m) => d[X (φ i) # X' i | Y i]

            With the notation of the previous lemma, we have \begin{equation}\label{5.3-conv} k - D[ X'{[m]} | Y{[m]} ] \leq \eta \sum_{i=1}^m d[X_{\sigma(i)};X'_i|Y_i] \end{equation} for any permutation $\sigma : {1,\dots,m} \rightarrow {1,\dots,m}$.