Documentation

PFR.MultiTauFunctional

The tau functional for multidistance #

Definition of the tau functional and basic facts

Main definitions: #

Main results #

We will frequently be working with finite additive groups with the discrete sigma-algebra.

Instances
    structure multiRefPackage (G : Type u_1) (Ω₀ : Type u_2) [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ω₀] :
    Type (max u_1 u_2)

    A structure that packages all the fixed information in the main argument. See https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Problem.20when.20instances.20are.20inside.20a.20structure for more discussion of the design choices here.

    • m :

      The torsion index of the group we are considering.

    • hm : self.m 2
    • htorsion : ∀ (x : G), self.m x = 0
    • hprob : MeasureTheory.IsProbabilityMeasure MeasureTheory.volume
    • X₀ : Ω₀G

      The random variable

    • hmeas : Measurable self.X₀
    • η :

      A small constant. The argument will only work for suitably small η.

    • hη : 0 < self
    • hη' : self 1
    Instances For
      noncomputable def multiTau {G : Type u_1} {Ω₀ : Type u_2} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) (Ω : Fin p.mType u_3) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) :

      If $(X_i)_{1 \leq i \leq m}$ is a tuple, we define its $\tau$-functional $$ \tau[ (X_i)_{1 \leq i \leq m}] := D[(X_i)_{1 \leq i \leq m}] + \eta \sum_{i=1}^m d[X_i; X^0].$$

      Equations
      • multiTau p Ω X = D[X ; ] + p * i : Fin p.m, d[X i # p.X₀]
      Instances For
        def multiTauMinimizes {G Ω₀ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG) :

        A $\tau$-minimizer is a tuple $(X_i)_{1 \leq i \leq m}$ that minimizes the $\tau$-functional among all tuples of $G$-valued random variables.

        Equations
        Instances For
          theorem multiTau_continuous {G Ω₀ : Type u} [MeasureableFinGroup G] [TopologicalSpace G] [DiscreteTopology G] [BorelSpace G] [MeasureTheory.MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) :
          Continuous fun (μ : Fin p.mMeasureTheory.ProbabilityMeasure G) => multiTau p (fun (x : Fin p.m) => G) (fun (i : Fin p.m) => MeasureTheory.MeasureSpace.mk (μ i)) fun (x : Fin p.m) => id

          If $G$ is finite, then a $\tau$ is continuous.

          theorem multiTau_min_exists {G Ω₀ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) :
          ∃ (Ω : Fin p.mType u) ( : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (X : (i : Fin p.m) → Ω iG), multiTauMinimizes p Ω X

          If $G$ is finite, then a $\tau$-minimizer exists.

          theorem multiTau_min_sum_le {G Ω₀ : Type u} [hG : MeasureableFinGroup G] [hΩ₀ : MeasureTheory.MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (hprobΩ : ∀ (i : Fin p.m), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume) (X : (i : Fin p.m) → Ω iG) (hX : ∀ (i : Fin p.m), Measurable (X i)) (h_min : multiTauMinimizes p Ω X) :
          i : Fin p.m, d[X i # p.X₀] 2 * p.m * p⁻¹ * d[p.X₀ # p.X₀]

          If $(X_i)_{1 \leq i \leq m}$ is a $\tau$-minimizer, then $\sum_{i=1}^m d[X_i; X^0] \leq \frac{2m}{\eta} d[X^0; X^0]$.

          theorem sub_multiDistance_le {G Ω₀ : Type u} [MeasureableFinGroup G] [hΩ₀ : MeasureTheory.MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (hΩprob : ∀ (i : Fin p.m), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume) (X : (i : Fin p.m) → Ω iG) (hmeasX : ∀ (i : Fin p.m), Measurable (X i)) (h_min : multiTauMinimizes p Ω X) (Ω' : Fin p.mType u) (hΩ' : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω' i)) (hΩprob' : ∀ (i : Fin p.m), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume) (X' : (i : Fin p.m) → Ω' iG) (hmeasX' : ∀ (i : Fin p.m), Measurable (X' i)) :
          D[X ; ] - D[X' ; hΩ'] p * i : Fin p.m, d[X i # X' i]

          If $(X_i)_{1 \leq i \leq m}$ is a $\tau$-minimizer, and $k := D[(X_i)_{1 \leq i \leq m}]$, then for any other tuple $(X'_i)_{1 \leq i \leq m}$, one has $$ k - D[(X'_i)_{1 \leq i \leq m}] \leq \eta \sum_{i=1}^m d[X_i; X'_i].$$

          theorem sub_condMultiDistance_le {G Ω₀ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (hΩprob : ∀ (i : Fin p.m), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume) (X : (i : Fin p.m) → Ω iG) (hmeasX : ∀ (i : Fin p.m), Measurable (X i)) (h_min : multiTauMinimizes p Ω X) (Ω' : Fin p.mType u) (hΩ' : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω' i)) (hΩ'prob : ∀ (i : Fin p.m), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume) (X' : (i : Fin p.m) → Ω' iG) (hmeasX' : ∀ (i : Fin p.m), Measurable (X' i)) {S : Type u} [Fintype S] [MeasurableSpace S] [MeasurableSingletonClass S] (Y : (i : Fin p.m) → Ω' iS) (hY : ∀ (i : Fin p.m), Measurable (Y i)) :
          D[X ; ] - D[X' | Y ; hΩ'] p * i : Fin p.m, d[X i # X' i | Y i]

          If $(X_i)_{1 \leq i \leq m}$ is a $\tau$-minimizer, and $k := D[(X_i)_{1 \leq i \leq m}]$, then for any other tuples $(X'_i)_{1 \leq i \leq m}$ and $(Y_i)_{1 \leq i \leq m}$ with the $X'_i$ $G$-valued, one has $$ k - D[(X'_i)_{1 \leq i \leq m} | (Y_i)_{1 \leq i \leq m}] \leq \eta \sum_{i=1}^m d[X_i; X'_i|Y_i].$$

          theorem sub_condMultiDistance_le' {G Ω₀ : Type u} [MeasureableFinGroup G] [MeasureTheory.MeasureSpace Ω₀] (p : multiRefPackage G Ω₀) (Ω : Fin p.mType u) (hΩ : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω i)) (hΩprob : ∀ (i : Fin p.m), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume) (X : (i : Fin p.m) → Ω iG) (hmeasX : ∀ (i : Fin p.m), Measurable (X i)) (h_min : multiTauMinimizes p Ω X) (Ω' : Fin p.mType u) (hΩ' : (i : Fin p.m) → MeasureTheory.MeasureSpace (Ω' i)) (hΩ'prob : ∀ (i : Fin p.m), MeasureTheory.IsProbabilityMeasure MeasureTheory.volume) (X' : (i : Fin p.m) → Ω' iG) (hmeasX' : ∀ (i : Fin p.m), Measurable (X' i)) {S : Type u} [Fintype S] [MeasurableSpace S] [MeasurableSingletonClass S] (Y : (i : Fin p.m) → Ω' iS) (hY : ∀ (i : Fin p.m), Measurable (Y i)) (φ : Equiv.Perm (Fin p.m)) :
          D[X ; ] - D[X' | Y ; hΩ'] p * i : Fin p.m, d[X (φ i) # X' i | Y i]

          With the notation of the previous lemma, we have \begin{equation}\label{5.3-conv} k - D[ X'{[m]} | Y{[m]} ] \leq \eta \sum_{i=1}^m d[X_{\sigma(i)};X'_i|Y_i] \end{equation} for any permutation $\sigma : \{1,\dots,m\} \rightarrow \{1,\dots,m\}$.