Documentation

Analysis.MeasureTheory.Section_1_2_2

Introduction to Measure Theory, Section 1.2.2: Lebesgue measurability #

A companion to (the introduction to) Section 1.2.2 of the book "An introduction to Measure Theory".

Lemma 1.2.13(i) (Every open set is Lebesgue measurable).

Lemma 1.2.13(ii) (Every closed set is Lebesgue measurable).

@[reducible, inline]
abbrev IsNull {d : } (E : Set (EuclideanSpace' d)) :
Equations
Instances For

    Lemma 1.2.13(iii) (Every null set is Lebesgue measurable).

    theorem IsNull.subset {d : } {E F : Set (EuclideanSpace' d)} (hE : IsNull E) (hFE : F E) :

    A subset of a null set is null.

    Lemma 1.2.13(iv) (Empty set is measurable).

    theorem LebesgueMeasurable.countable_union {d : } {E : Set (EuclideanSpace' d)} (hE : ∀ (n : ), LebesgueMeasurable (E n)) :
    LebesgueMeasurable (⋃ (n : ), E n)

    Lemma 1.2.13(vi) (Countable union of measurable sets is measurable).

    Lemma 1.2.13(v) (Complement of a measurable set is measurable).

    theorem LebesgueMeasurable.finite_union {d n : } {E : Fin nSet (EuclideanSpace' d)} (hE : ∀ (i : Fin n), LebesgueMeasurable (E i)) :
    LebesgueMeasurable (⋃ (i : Fin n), E i)
    theorem LebesgueMeasurable.countable_inter {d : } {E : Set (EuclideanSpace' d)} (hE : ∀ (n : ), LebesgueMeasurable (E n)) :
    LebesgueMeasurable (⋂ (n : ), E n)

    Lemma 1.2.13(vii) (Countable intersection of measurable sets is measurable).

    theorem LebesgueMeasurable.finite_inter {d n : } {E : Fin nSet (EuclideanSpace' d)} (hE : ∀ (i : Fin n), LebesgueMeasurable (E i)) :
    LebesgueMeasurable (⋂ (i : Fin n), E i)
    theorem LebesgueMeasurable.finset_inter {d : } {α : Type u_1} [DecidableEq α] {E : αSet (EuclideanSpace' d)} {S : Finset α} (hE : iS, LebesgueMeasurable (E i)) :
    LebesgueMeasurable (⋂ iS, E i)

    Finite intersection indexed by a Finset is Lebesgue measurable.

    theorem LebesgueMeasurable.finset_union {d : } {α : Type u_1} [DecidableEq α] {E : αSet (EuclideanSpace' d)} {S : Finset α} (hE : iS, LebesgueMeasurable (E i)) :
    LebesgueMeasurable (⋃ iS, E i)

    Finite union indexed by a Finset is Lebesgue measurable.

    theorem LebesgueMeasurable.of_ae_eq {d : } {A B N : Set (EuclideanSpace' d)} (hB : LebesgueMeasurable B) (hN : IsNull N) (h_eq : A N = B N) :

    If A = B outside a null set N (i.e., A ∩ Nᶜ = B ∩ Nᶜ), then A is measurable if B is.

    Closed balls are Lebesgue measurable.

    theorem LebesgueMeasurable.TFAE {d : } (E : Set (EuclideanSpace' d)) :
    [LebesgueMeasurable E, ε > 0, ∃ (U : Set (EuclideanSpace' d)), IsOpen U E U Lebesgue_outer_measure (U \ E) ε, ε > 0, ∃ (U : Set (EuclideanSpace' d)), IsOpen U Lebesgue_outer_measure (symmDiff U E) ε, ε > 0, ∃ (F : Set (EuclideanSpace' d)), IsClosed F F E Lebesgue_outer_measure (E \ F) ε, ε > 0, ∃ (F : Set (EuclideanSpace' d)), IsClosed F Lebesgue_outer_measure (symmDiff F E) ε, ε > 0, ∃ (E' : Set (EuclideanSpace' d)), LebesgueMeasurable E' Lebesgue_outer_measure (symmDiff E' E) ε].TFAE

    Exercise 1.2.7 (Criteria for measurability)

    @[reducible, inline]
    abbrev CantorInterval (n : ) :
    Equations
    Instances For
      @[reducible, inline]
      abbrev CantorSet :
      Equations
      Instances For

        Exercise 1.2.9 (Middle thirds Cantor set )

        @[simp]

        Lemma 1.2.15(a) (Empty set has zero Lebesgue measure). The proof is missing.

        theorem Lebesgue_measure.countable_union {d : } {E : Set (EuclideanSpace' d)} (hmes : ∀ (n : ), LebesgueMeasurable (E n)) (hdisj : Set.univ.PairwiseDisjoint E) :
        Lebesgue_measure (⋃ (n : ), E n) = ∑' (n : ), Lebesgue_measure (E n)

        Lemma 1.2.15(b) (Countable additivity). Strategy: m(⋃ E_n) = ∑' m(E_n) for pairwise disjoint measurable sets.

        • Direction ≤: Countable subadditivity (Lebesgue_outer_measure.union_le)
        • Direction ≥: Decompose ℝᵈ into annuli Aₘ, express each E_n = ⋃_m (E_n ∩ Aₘ), apply bounded case to the doubly-indexed family (E_n ∩ Aₘ).
        theorem Lebesgue_measure.finite_union {d n : } {E : Fin nSet (EuclideanSpace' d)} (hmes : ∀ (n : Fin n), LebesgueMeasurable (E n)) (hdisj : Set.univ.PairwiseDisjoint E) :
        Lebesgue_measure (⋃ (n : Fin n), E n) = ∑' (n : Fin n), Lebesgue_measure (E n)
        theorem Lebesgue_measure.upward_monotone_convergence {d : } {E : Set (EuclideanSpace' d)} (hE : ∀ (n : ), LebesgueMeasurable (E n)) (hmono : ∀ (n : ), E n E (n + 1)) :
        Filter.Tendsto (fun (n : ) => Lebesgue_measure (E n)) Filter.atTop (nhds (Lebesgue_measure (⋃ (n : ), E n)))

        Exercise 1.2.11(a) (Upward monotone convergence)

        theorem Lebesgue_measure.downward_monotone_convergence {d : } {E : Set (EuclideanSpace' d)} (hE : ∀ (n : ), LebesgueMeasurable (E n)) (hmono : ∀ (n : ), E (n + 1) E n) (hfin : ∃ (n : ), Lebesgue_measure (E n) < ) :
        Filter.Tendsto (fun (n : ) => Lebesgue_measure (E n)) Filter.atTop (nhds (Lebesgue_measure (⋂ (n : ), E n)))

        Exercise 1.2.11(b) (Downward monotone convergence)

        Exercise 1.2.15 (Inner regularity)

        theorem LebesgueMeasurable.finite_TFAE {d : } (E : Set (EuclideanSpace' d)) :
        [LebesgueMeasurable E Lebesgue_measure E < , ε > 0, ∃ (U : Set (EuclideanSpace' d)), IsOpen U E U Lebesgue_measure U < Lebesgue_outer_measure (U \ E) ε, ε > 0, ∃ (U : Set (EuclideanSpace' d)), IsOpen U Bornology.IsBounded U Lebesgue_outer_measure (symmDiff U E) ε, ε > 0, ∃ (F : Set (EuclideanSpace' d)), IsCompact F F E Lebesgue_outer_measure (E \ F) ε, ε > 0, ∃ (F : Set (EuclideanSpace' d)), IsCompact F Lebesgue_outer_measure (symmDiff F E) ε, ε > 0, ∃ (E' : Set (EuclideanSpace' d)), LebesgueMeasurable E' Lebesgue_measure E' < Lebesgue_outer_measure (symmDiff E' E) ε, ε > 0, ∃ (E' : Set (EuclideanSpace' d)), LebesgueMeasurable E' Bornology.IsBounded E' Lebesgue_outer_measure (symmDiff E' E) ε, ε > 0, ∃ (E' : Set (EuclideanSpace' d)), IsElementary E' Lebesgue_outer_measure (symmDiff E' E) ε, ε > 0, ∃ (n : ) (F : Finset (Box d)), (∀ BF, B.IsDyadicAtScale n) Lebesgue_outer_measure (symmDiff (⋃ BF, B) E) ε].TFAE

        Exercise 1.2.16 (Criteria for measurability)

        Exercise 1.2.17 (Caratheodory criterion one direction)

        noncomputable def inner_measure {d : } {E : Set (EuclideanSpace' d)} (hE : Bornology.IsBounded E) :
        Equations
        Instances For
          theorem inner_measure.eq {d : } {E A : Set (EuclideanSpace' d)} (hE : Bornology.IsBounded E) (hA : IsElementary A) (hsub : E A) :

          Exercise 1.2.18(i) (Inner measure)

          Exercise 1.2.18(ii) (Inner measure)

          Exercise 1.2.18(ii) (Inner measure)

          def IsFσ {X : Type u_1} [TopologicalSpace X] (s : Set X) :
          Equations
          Instances For
            theorem LebesgueMeasurable.TFAE' {d : } (E : Set (EuclideanSpace' d)) :
            [LebesgueMeasurable E, ∃ (F : Set (EuclideanSpace' d)) (N : Set (EuclideanSpace' d)), IsGδ F IsNull N E = F \ N, ∃ (F : Set (EuclideanSpace' d)) (N : Set (EuclideanSpace' d)), IsFσ F IsNull N E = F N].TFAE

            Exercise 1.2.19

            Exercise 1.2.20 (Translation invariance)

            Exercise 1.2.21 (Change of variables)

            Exercise 1.2.21 (Change of variables)

            theorem LebesgueMeasurable.prod {d₁ d₂ : } {E₁ : Set (EuclideanSpace' d₁)} {E₂ : Set (EuclideanSpace' d₂)} (hE₁ : LebesgueMeasurable E₁) (hE₂ : LebesgueMeasurable E₂) :

            Exercise 1.2.22

            theorem Lebesgue_measure.prod {d₁ d₂ : } {E₁ : Set (EuclideanSpace' d₁)} {E₂ : Set (EuclideanSpace' d₂)} (hE₁ : LebesgueMeasurable E₁) (hE₂ : LebesgueMeasurable E₂) :

            Exercise 1.2.22

            theorem Lebesgue_measure.unique {d : } (m : Set (EuclideanSpace' d)EReal) (h_empty : m = 0) (h_pos : ∀ (E : Set (EuclideanSpace' d)), 0 m E) (h_add : ∀ (E : Set (EuclideanSpace' d)), Set.univ.PairwiseDisjoint E(∀ (n : ), LebesgueMeasurable (E n))m (⋃ (n : ), E n) = ∑' (n : ), m (E n)) (hnorm : m (Box.unit_cube d) = 1) (E : Set (EuclideanSpace' d)) :

            Exercise 1.2.23 (Uniqueness of Lebesgue measure)

            instance IsElementary.ae_equiv {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :
            Setoid (Set A)

            Exercise 1.2.24(i) (Lebesgue measure as the completion of elementary measure)

            Equations
            Equations
            Instances For
              def IsElementary.ae_quot {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) (E : Set A) :
              Equations
              Instances For
                noncomputable def IsElementary.dist {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :
                hA.ae_subsetshA.ae_subsets

                Exercise 1.2.24(ii) (Lebesgue measure as the completion of elementary measure)

                Equations
                Instances For
                  noncomputable instance IsElementary.metric {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :

                  Exercise 1.2.24(ii) (Lebesgue measure as the completion of elementary measure)

                  Equations
                  • hA.metric = { dist := hA.dist, dist_self := , dist_comm := , dist_triangle := , edist_dist := , uniformity_dist := , cobounded_sets := , eq_of_dist_eq_zero := }

                  Exercise 1.2.24(ii) (Lebesgue measure as the completion of elementary measure)

                  noncomputable def IsElementary.ae_elem {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :
                  Equations
                  Instances For
                    noncomputable def IsElementary.ae_measurable {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) :
                    Equations
                    Instances For

                      Exercise 1.2.24(iii) (Lebesgue measure as the completion of elementary measure)

                      Exercise 1.2.24(c) (Lebesgue measure as the completion of elementary measure)

                      noncomputable def IsElementary.ae_measure {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) (E : hA.ae_measurable) :
                      Equations
                      Instances For
                        noncomputable def IsElementary.ae_elem_measure {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) (E : hA.ae_elem) :
                        Equations
                        Instances For
                          theorem IsElementary.ae_measure_eq_completion {d : } {A : Set (EuclideanSpace' d)} (hA : IsElementary A) (m : hA.ae_subsets) :
                          (ContinuousOn m hA.ae_measurable ∀ (E : hA.ae_elem), m E = hA.ae_elem_measure E) ∀ (E : hA.ae_measurable), m E = hA.ae_measure E

                          Exercise 1.2.24(iv) (Lebesgue measure as the completion of elementary measure)

                          @[reducible, inline]
                          noncomputable abbrev IsCurve {d : } (C : Set (EuclideanSpace' d)) :
                          Equations
                          Instances For
                            theorem IsCurve.null {d : } (hd : d 2) {C : Set (EuclideanSpace' d)} (hC : IsCurve C) :

                            Exercise 1.2.25(i)