Documentation

Analysis.Section_11_3

Analysis I, Section 11.3: Upper and lower Riemann integrals #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]

Definition 11.3.1 (Majorization of functions)

Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev Chapter11.upper_integral (f : ) (I : BoundedInterval) :

      Definition 11.3.2 (Uppper and lower Riemann integrals )

      Equations
      Instances For
        @[reducible, inline]
        noncomputable abbrev Chapter11.lower_integral (f : ) (I : BoundedInterval) :
        Equations
        Instances For
          theorem Chapter11.integral_bound_upper_of_bounded {f : } {M : } {I : BoundedInterval} (h : xI, |f x| M) :
          theorem Chapter11.integral_bound_lower_of_bounded {f : } {M : } {I : BoundedInterval} (h : xI, |f x| M) :
          theorem Chapter11.integral_bound_lower_le_upper {f : } {I : BoundedInterval} {a b : } (ha : a (fun (x : ) => PiecewiseConstantOn.integ x I) '' {g : | MajorizesOn g f I PiecewiseConstantOn g I}) (hb : b (fun (x : ) => PiecewiseConstantOn.integ x I) '' {g : | MinorizesOn g f I PiecewiseConstantOn g I}) :
          b a
          theorem Chapter11.le_lower_integral {f : } {I : BoundedInterval} {M : } (h : xI, |f x| M) :

          Lemma 11.3.3. The proof has been reorganized somewhat from the textbook.

          theorem Chapter11.upper_integral_le {f : } {I : BoundedInterval} {M : } (h : xI, |f x| M) :
          @[reducible, inline]
          noncomputable abbrev Chapter11.integ (f : ) (I : BoundedInterval) :

          Definition 11.3.4 (Riemann integral) As we permit junk values, the simplest definition for the Riemann integral is the upper integral.

          Equations
          Instances For
            theorem Chapter11.integ_congr {f g : } {I : BoundedInterval} (h : Set.EqOn f g I) :
            integ f I = integ g I
            @[reducible, inline]
            noncomputable abbrev Chapter11.IntegrableOn (f : ) (I : BoundedInterval) :
            Equations
            Instances For

              Lemma 11.3.7 / Exercise 11.3.3

              theorem Chapter11.integ_on_subsingleton {f : } {I : BoundedInterval} (hI : I.length = 0) :

              Remark 11.3.8

              @[reducible, inline]
              noncomputable abbrev Chapter11.upper_riemann_sum (f : ) {I : BoundedInterval} (P : Partition I) :

              Definition 11.3.9 (Riemann sums). The restriction to positive length J is not needed thanks to various junk value conventions.

              Equations
              Instances For
                @[reducible, inline]
                noncomputable abbrev Chapter11.lower_riemann_sum (f : ) {I : BoundedInterval} (P : Partition I) :
                Equations
                Instances For
                  theorem Chapter11.upper_riemann_sum_le {f g : } {I : BoundedInterval} (P : Partition I) (hf : Chapter9.BddOn f I) (hgf : MajorizesOn g f I) (hg : PiecewiseConstantOn g I) :

                  Lemma 11.3.11 / Exercise 11.3.4

                  theorem Chapter11.lower_riemann_sum_ge {f h : } {I : BoundedInterval} (P : Partition I) (hf : Chapter9.BddOn f I) (hfh : MinorizesOn h f I) (hg : PiecewiseConstantOn h I) :

                  Proposition 11.3.12 / Exercise 11.3.5

                  theorem Chapter11.MajorizesOn.trans {f g h : } {I : BoundedInterval} (hfg : MajorizesOn f g I) (hgh : MajorizesOn g h I) :

                  Exercise 11.3.1

                  theorem Chapter11.MajorizesOn.anti_symm {f g : } {I : BoundedInterval} (x : ) :
                  x I → (f x = g x MajorizesOn f g I MajorizesOn g f I)

                  Exercise 11.3.1

                  def Chapter11.MajorizesOn.of_add :
                  Decidable (∀ (f g h : ) (I : BoundedInterval), MajorizesOn f g IMajorizesOn (f + h) (g + h) I)

                  Exercise 11.3.2

                  Equations
                  Instances For
                    def Chapter11.MajorizesOn.of_mul :
                    Decidable (∀ (f g h : ) (I : BoundedInterval), MajorizesOn f g IMajorizesOn (f * h) (g * h) I)
                    Equations
                    Instances For
                      def Chapter11.MajorizesOn.of_smul :
                      Decidable (∀ (f g : ) (c : ) (I : BoundedInterval), MajorizesOn f g IMajorizesOn (c f) (c g) I)
                      Equations
                      Instances For