Documentation

Analysis.Section_11_9

Analysis I, Section 11.9: The two fundamental theorems of calculus #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter11.cts_of_integ {a b : } {f : } (hf : IntegrableOn f (BoundedInterval.Icc a b)) :
ContinuousOn (fun (x : ) => integ f (BoundedInterval.Icc a x)) (Set.Icc a b)

Theorem 11.9.1 (First Fundamental Theorem of Calculus)

theorem Chapter11.deriv_of_integ {a b : } (hab : a < b) {f : } (hf : IntegrableOn f (BoundedInterval.Icc a b)) {x₀ : } (hx₀ : x₀ Set.Icc a b) (hcts : ContinuousWithinAt f (↑(BoundedInterval.Icc a b)) x₀) :
HasDerivWithinAt (fun (x : ) => integ f (BoundedInterval.Icc a x)) (f x₀) (Set.Icc a b) x₀
@[reducible, inline]
noncomputable abbrev Chapter11.F_11_9_2 (x : ) :
Equations
Instances For
    theorem Chapter11.DifferentiableOn.of_F_11_9_2 {x : } (hx : ¬∃ (r : ), x = r) (hx' : x Set.Icc 0 1) :
    @[reducible, inline]

    Definition 11.9.3. We drop the requirement that x be a limit point as this makes the Lean arguments slightly cleaner

    Equations
    Instances For
      theorem Chapter11.AntiderivOn.mono {F f : } {I J : BoundedInterval} (h : AntiderivOn F f I) (hIJ : J I) :
      theorem Chapter11.integ_eq_antideriv_sub {a b : } (h : a b) {f F : } (hf : IntegrableOn f (BoundedInterval.Icc a b)) (hF : AntiderivOn F f (BoundedInterval.Icc a b)) :
      integ f (BoundedInterval.Icc a b) = F b - F a

      Theorem 11.9.4 (Second Fundamental Theorem of Calculus)

      @[reducible, inline]
      noncomputable abbrev Chapter11.F_11_9 :
      Equations
      Instances For
        theorem Chapter11.antideriv_eq_antideriv_add_const {I : BoundedInterval} {f F G : } (hfF : AntiderivOn F f I) (hfG : AntiderivOn G f I) :
        ∃ (C : ), xI, F x = G x + C

        Lemma 11.9.5 / Exercise 11.9.2

        theorem Chapter7.Series.converges_qseries' (p : ) :
        (mk' fun (n : { n : // n 1 }) => 1 / n ^ p).converges p > 1

        Exercise 11.6.5, moved to Section 11.9

        theorem Chapter7.Series.converges_qseries'' (p : ) :
        (mk' fun (n : { n : // n 1 }) => 1 / n ^ p).absConverges p > 1