Analysis I, Section 11.9: The two fundamental theorems of calculus #
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
- The fundamental theorems of calculus.
theorem
Chapter11.cts_of_integ
{a b : ℝ}
{f : ℝ → ℝ}
(hf : IntegrableOn f (BoundedInterval.Icc a b))
:
ContinuousOn (fun (x : ℝ) => integ f (BoundedInterval.Icc a x)) (Set.Icc a b)
Theorem 11.9.1 (First Fundamental Theorem of Calculus)
theorem
Chapter11.deriv_of_integ
{a b : ℝ}
(hab : a < b)
{f : ℝ → ℝ}
(hf : IntegrableOn f (BoundedInterval.Icc a b))
{x₀ : ℝ}
(hx₀ : x₀ ∈ Set.Icc a b)
(hcts : ContinuousWithinAt f (↑(BoundedInterval.Icc a b)) x₀)
:
HasDerivWithinAt (fun (x : ℝ) => integ f (BoundedInterval.Icc a x)) (f x₀) (Set.Icc a b) x₀
Example 11.9.2
@[reducible, inline]
Equations
Instances For
theorem
Chapter11.DifferentiableOn.of_F_11_9_2'
{q : ℚ}
(hq : ↑q ∈ Set.Icc 0 1)
:
¬DifferentiableWithinAt ℝ F_11_9_2 (Set.Icc 0 1) ↑q
Exercise 11.9.1
@[reducible, inline]
Definition 11.9.3. We drop the requirement that x be a limit point as this makes the Lean arguments slightly cleaner
Equations
- Chapter11.AntiderivOn F f I = (DifferentiableOn ℝ F ↑I ∧ ∀ x ∈ I, HasDerivWithinAt F (f x) (↑I) x)
Instances For
theorem
Chapter11.AntiderivOn.mono
{F f : ℝ → ℝ}
{I J : BoundedInterval}
(h : AntiderivOn F f I)
(hIJ : J ⊆ I)
:
AntiderivOn F f J
theorem
Chapter11.integ_eq_antideriv_sub
{a b : ℝ}
(h : a ≤ b)
{f F : ℝ → ℝ}
(hf : IntegrableOn f (BoundedInterval.Icc a b))
(hF : AntiderivOn F f (BoundedInterval.Icc a b))
:
Theorem 11.9.4 (Second Fundamental Theorem of Calculus)
theorem
Chapter11.antideriv_eq_antideriv_add_const
{I : BoundedInterval}
{f F G : ℝ → ℝ}
(hfF : AntiderivOn F f I)
(hfG : AntiderivOn G f I)
:
Lemma 11.9.5 / Exercise 11.9.2