Documentation

equational_theories.FreeSemigroup

def treeConcat {α : Type u_1} (t : FreeMagma α) :
List α
Equations
def rightJoinTrees {α : Type u_1} (t1 t2 : FreeMagma α) :
Equations
theorem AssocImpliesForkEquivRightJoin {α : Type u_1} {G : Type u_2} [Magma G] (assoc : Equation4512 G) (f : αG) (tl tr : FreeMagma α) :
tl tr f = rightJoinTrees tl tr f
theorem AssocFullyRightAssociate {α : Type u_1} {G : Type u_2} [Magma G] (assoc : Equation4512 G) (f : αG) (t : FreeMagma α) :
theorem Assoc4 {G : Type u_1} [Magma G] (assoc : Equation4512 G) (x y z w : G) :
((x y) z) w = x (y (z w))

Example usage of AssocFullyRightAssociate

inductive FreeSemigroup (α : Type u_1) :
Type u_1
Instances For
Equations
Equations
  • freeMagmaToFreeSgr = { toFun := fun (t : FreeMagma α) => t FreeSemigroup.Singleton, map_op' := }
def evalInSgr {α : Type u_1} {G : Type u_2} [Magma G] (f : αG) (ls : FreeSemigroup α) :
G
Equations
def evalInSgrHom {α : Type u_1} {G : Type u_2} [Magma G] (assoc : Equation4512 G) (f : αG) :
Equations
theorem evalInSgrHom.mapper {α : Type u_1} {G : Type u_2} [Magma G] (assoc : Equation4512 G) (f : αG) (ls1 ls2 : FreeSemigroup α) :
evalInSgr f (ls1 ls2) = evalInSgr f ls1 evalInSgr f ls2
theorem AssocImpliesSgrProjFaithful {α : Type u_1} {G : Type u_2} [Magma G] (assoc : Equation4512 G) (f : αG) (t : FreeMagma α) :
t f = evalInSgr f (freeMagmaToFreeSgr t)
theorem CommSgrImpliesInsertSortedFaithful {n : } {G : Type u_1} [Magma G] (assoc : Equation4512 G) (comm : Equation43 G) (f : Fin nG) (i : Fin n) (ls : FreeSemigroup (Fin n)) :
theorem CommSgrImpliesInsertionSortFaithful {n : } {G : Type u_1} [Magma G] (assoc : Equation4512 G) (comm : Equation43 G) (f : Fin nG) (ls : FreeSemigroup (Fin n)) :
def InvolutiveImpliesInvolutionReduceFaithful {α : Type u_1} [DecidableEq α] {G : Type u_2} [Magma G] (ls : FreeSemigroup α) (invol : Equation16 G) (f : αG) :
Equations
  • =
def equation1571Reducer {n : } (t : FreeMagma (Fin (n + 1))) :
Equations
theorem AbGrpPow2ImpliesEquation1571ReducerFaithful {n : } {G : Type u_1} [Magma G] (t : FreeMagma (Fin (n + 1))) (f : Fin (n + 1)G) (assoc : Equation4512 G) (comm : Equation43 G) (invol : Equation16 G) :