Dual to Problem A1 from Putnam 2001
This implication is Problem A1 from Putnam 2001
This proof is from https://mathoverflow.net/a/450905/766
The below results for Equation1571 are out of order because early ones are lemmas for later ones
theorem
Subgraph.ProveEquation1571Consequence
{n : ℕ}
{G : Type u_1}
[Magma G]
(eq1571 : Equation1571 G)
(law : Law.MagmaLaw (Fin (n + 1)))
(eq : equation1571Reducer law.lhs = equation1571Reducer law.rhs)
:
G ⊧ law
This result was first obtained by Kisielewicz in 1997 via computer assistance.
Putnam 1978, problem A4, part (b)
Putnam 1978, problem A4, part (a)
theorem
Subgraph.Equation4512_implies_Equation910472
(G : Type u_1)
[Magma G]
(h : Equation4512 G)
:
The Bol loop and Moufang loop identities are all weakenings of t
theorem
Subgraph.Equation4512_implies_Equation930594
(G : Type u_1)
[Magma G]
(h : Equation4512 G)
:
theorem
Subgraph.Equation4512_implies_Equation914612
(G : Type u_1)
[Magma G]
(h : Equation4512 G)
:
theorem
Subgraph.Equation4512_implies_Equation916037
(G : Type u_1)
[Magma G]
(h : Equation4512 G)
:
theorem
Subgraph.Equation4512_implies_Equation936498
(G : Type u_1)
[Magma G]
(h : Equation4512 G)
:
theorem
Subgraph.Equation4512_implies_Equation921941
(G : Type u_1)
[Magma G]
(h : Equation4512 G)
:
theorem
Subgraph.Equation5_not_implies_Equation42 :
∃ (G : Type) (x : Magma G), Equation5 G ∧ ¬Equation42 G ∧ ¬Equation43 G ∧ ¬Equation4513 G
theorem
Subgraph.Equation23_not_implies_Equation14 :
∃ (G : Type) (x : Magma G), Equation23 G ∧ ¬Equation14 G
theorem
Subgraph.Equation38_not_implies_Equation23 :
∃ (G : Type) (x : Magma G), Equation38 G ∧ ¬Equation23 G
theorem
Subgraph.Equation23_not_implies_Equation39 :
∃ (G : Type) (x : Magma G), Equation23 G ∧ ¬Equation39 G
theorem
Subgraph.Equation39_not_implies_Equation23 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation23 G
theorem
Subgraph.Equation39_not_implies_Equation40 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation40 G
theorem
Subgraph.Equation39_not_implies_Equation168 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation168 G
theorem
Subgraph.Equation39_not_implies_Equation4512 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation4512 G
theorem
Subgraph.Equation39_not_implies_Equation4513 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation4513 G
theorem
Subgraph.Equation39_not_implies_Equation4522 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation4522 G
theorem
Subgraph.Equation39_not_implies_Equation4564 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation4564 G
theorem
Subgraph.Equation39_not_implies_Equation4579 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation4579 G
theorem
Subgraph.Equation39_not_implies_Equation4582 :
∃ (G : Type) (x : Magma G), Equation39 G ∧ ¬Equation4582 G
theorem
Subgraph.Equation40_not_implies_Equation39 :
∃ (G : Type) (x : Magma G), Equation40 G ∧ ¬Equation39 G
theorem
Subgraph.Equation40_not_implies_Equation42 :
∃ (G : Type) (x : Magma G), Equation40 G ∧ ¬Equation42 G
theorem
Subgraph.Equation40_not_implies_Equation43 :
∃ (G : Type) (x : Magma G), Equation40 G ∧ ¬Equation43 G
theorem
Subgraph.Equation40_not_implies_Equation4512 :
∃ (G : Type) (x : Magma G), Equation40 G ∧ ¬Equation4512 G
theorem
Subgraph.Equation42_not_implies_Equation43 :
∃ (G : Type) (x : Magma G), Equation42 G ∧ ¬Equation43 G
theorem
Subgraph.Equation42_not_implies_Equation4512 :
∃ (G : Type) (x : Magma G), Equation42 G ∧ ¬Equation4512 G
theorem
Subgraph.Equation43_not_implies_Equation42 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation42 G
theorem
Subgraph.Equation43_not_implies_Equation387 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation387 G
theorem
Subgraph.Equation43_not_implies_Equation4512 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation4512 G
theorem
Subgraph.Equation168_not_implies_Equation23 :
∃ (G : Type) (x : Magma G), Equation168 G ∧ ¬Equation23 G
theorem
Subgraph.Equation168_not_implies_Equation39 :
∃ (G : Type) (x : Magma G), Equation168 G ∧ ¬Equation39 G
theorem
Subgraph.Equation387_not_implies_Equation39 :
∃ (G : Type) (x : Magma G), Equation387 G ∧ ¬Equation39 G
theorem
Subgraph.Equation387_not_implies_Equation40 :
∃ (G : Type) (x : Magma G), Equation387 G ∧ ¬Equation40 G
theorem
Subgraph.Equation387_not_implies_Equation42 :
∃ (G : Type) (x : Magma G), Equation387 G ∧ ¬Equation42 G
theorem
Subgraph.Equation387_not_implies_Equation4512 :
∃ (G : Type) (x : Magma G), Equation387 G ∧ ¬Equation4512 G
theorem
Subgraph.Equation4512_not_implies_Equation42 :
∃ (G : Type) (x : Magma G), Equation4512 G ∧ ¬Equation42 G
theorem
Subgraph.Equation4512_not_implies_Equation4513 :
∃ (G : Type) (x : Magma G), Equation4512 G ∧ ¬Equation4513 G
theorem
Subgraph.Equation4513_not_implies_Equation4522 :
∃ (G : Type) (x : Magma G), Equation4513 G ∧ ¬Equation4522 G
Equations
- Subgraph.add Subgraph.Th.t1 Subgraph.Th.t1 = Subgraph.Th.t2
- Subgraph.add Subgraph.Th.t1 Subgraph.Th.t2 = Subgraph.Th.t3
- Subgraph.add Subgraph.Th.t1 Subgraph.Th.t3 = Subgraph.Th.t3
- Subgraph.add Subgraph.Th.t2 Subgraph.Th.t1 = Subgraph.Th.t3
- Subgraph.add Subgraph.Th.t2 Subgraph.Th.t2 = Subgraph.Th.t3
- Subgraph.add Subgraph.Th.t2 Subgraph.Th.t3 = Subgraph.Th.t3
- Subgraph.add Subgraph.Th.t3 x = Subgraph.Th.t3
Instances For
theorem
Subgraph.Equation4582_not_implies_Equation39 :
∃ (G : Type) (x : Magma G), Equation4582 G ∧ ¬Equation39 G
theorem
Subgraph.Equation4582_not_implies_Equation40 :
∃ (G : Type) (x : Magma G), Equation4582 G ∧ ¬Equation40 G
theorem
Subgraph.Equation4582_not_implies_Equation42 :
∃ (G : Type) (x : Magma G), Equation4582 G ∧ ¬Equation42 G
theorem
Subgraph.Equation4582_not_implies_Equation43 :
∃ (G : Type) (x : Magma G), Equation4582 G ∧ ¬Equation43 G
theorem
Subgraph.Equation4582_not_implies_Equation46 :
∃ (G : Type) (x : Magma G), Equation4582 G ∧ ¬Equation46 G
theorem
Subgraph.Equation43_not_implies_Equation910472 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation910472 G
theorem
Subgraph.Equation43_not_implies_Equation930594 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation930594 G
theorem
Subgraph.Equation43_not_implies_Equation914612 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation914612 G
theorem
Subgraph.Equation43_not_implies_Equation916037 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation916037 G
theorem
Subgraph.Equation43_not_implies_Equation936498 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation936498 G
theorem
Subgraph.Equation43_not_implies_Equation921941 :
∃ (G : Type) (x : Magma G), Equation43 G ∧ ¬Equation921941 G