Documentation

EstimateTools.OrderOfMagnitude

@[reducible, inline]
Equations
Instances For
    noncomputable def Real.toPositiveHyperreal (x : ) (hx : 0 < x) :
    Equations
    Instances For
      @[simp]
      theorem Real.toPositiveHyperreal_coe (x : ) (hx : 0 < x) :
      (x.toPositiveHyperreal hx) = x

      The asymptotic preorder in the positive hyperreals.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible, inline]
        Equations
        Instances For
          @[reducible, inline]
          Equations
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              @[reducible, inline]
              Equations
              Instances For
                @[reducible, inline]
                Equations
                Instances For
                  @[simp]
                  theorem Real.order_of_pos (x : ) (hx : 0 < x) :
                  @[simp]
                  @[reducible, inline]
                  noncomputable abbrev to_hyperreal (x : ) :
                  Equations
                  Instances For
                    noncomputable instance pow_fn :
                    Pow () ()
                    Equations
                    @[simp]
                    theorem pow_fn_eq (x y : ) (n : ) :
                    (x ^ y) n = x n ^ y n
                    @[simp]
                    theorem pow_fn_zero (x : ) :
                    x ^ 0 = 1
                    @[simp]
                    theorem Hyperreal.coe_pow' (x y : ) :
                    x ^ y = ↑(x ^ y)
                    theorem Hyperreal.lt_def :
                    (fun (x1 x2 : ℝ*) => x1 < x2) = Filter.Germ.LiftRel fun (x1 x2 : ) => x1 < x2
                    theorem Hyperreal.le_def :
                    (fun (x1 x2 : ℝ*) => x1 x2) = Filter.Germ.LiftRel fun (x1 x2 : ) => x1 x2
                    theorem Hyperreal.gt_def :
                    (fun (x1 x2 : ℝ*) => x1 > x2) = Filter.Germ.LiftRel fun (x1 x2 : ) => x1 > x2
                    theorem Hyperreal.ge_def :
                    (fun (x1 x2 : ℝ*) => x1 x2) = Filter.Germ.LiftRel fun (x1 x2 : ) => x1 x2
                    theorem Hyperreal.pow_of_pos {x : ℝ*} (y : ℝ*) :
                    x > 0x ^ y > 0
                    @[simp]
                    theorem Hyperreal.pow_of_one (y : ℝ*) :
                    1 ^ y = 1
                    Equations
                    @[simp]
                    theorem PositiveHyperreal.pow_coe (X : PositiveHyperreal) (y : ℝ*) :
                    ↑(X ^ y) = X ^ y
                    theorem Hyperreal.pow_le_pow {x y z : ℝ*} (hx : x 0) (hz : z 0) (hxy : x y) :
                    x ^ z y ^ z
                    theorem Hyperreal.pow_le_pow' {x y z : ℝ*} (hx : x > 0) (hz : z 0) (hxy : x y) :
                    x ^ z y ^ z
                    theorem Hyperreal.mul_pow {x y : ℝ*} (hx : x 0) (hy : y 0) (z : ℝ*) :
                    (x * y) ^ z = x ^ z * y ^ z
                    theorem Hyperreal.pow_add {x : ℝ*} (hx : x > 0) (y z : ℝ*) :
                    x ^ (y + z) = x ^ y * x ^ z
                    theorem Hyperreal.pow_mul {x : ℝ*} (hx : x > 0) (y z : ℝ*) :
                    x ^ (y * z) = (x ^ y) ^ z
                    @[simp]
                    theorem Hyperreal.pow_zero (x : ℝ*) :
                    x ^ 0 = 1
                    @[simp]
                    theorem Hyperreal.pow_one (x : ℝ*) :
                    x ^ 1 = x
                    Equations
                    @[simp]
                    theorem PositiveHyperreal.order_pow (X : PositiveHyperreal) (y : ) :
                    (X ^ y).order = X.order ^ y
                    @[simp]
                    noncomputable instance OrderOfMagnitude.inv :
                    Equations
                    @[simp]
                    theorem OrderOfMagnitude.div_eq (X Y : OrderOfMagnitude) :
                    X / Y = X * Y ^ (-1)
                    Equations
                    • One or more equations did not get rendered due to their size.
                    theorem power_i (X Y : OrderOfMagnitude) (α : ) :
                    (X * Y) ^ α = X ^ α * Y ^ α
                    theorem power_i' (X Y : OrderOfMagnitude) (α : ) :
                    (X / Y) ^ α = X ^ α / Y ^ α
                    theorem power_ii {β : } (X : OrderOfMagnitude) (α : ) :
                    X ^ (α * β) = (X ^ α) ^ β
                    @[simp]
                    theorem power_iv (α : ) :
                    1 ^ α = 1
                    theorem power_vi {X Y : OrderOfMagnitude} {α : } ( : α 0) (hXY : X Y) :
                    X ^ α Y ^ α
                    theorem power_v (X Y : OrderOfMagnitude) {α : } ( : α 0) :
                    (X + Y) ^ α = X ^ α + Y ^ α
                    theorem power_vii (X Y : OrderOfMagnitude) {α : } ( : α > 0) :
                    X Y X ^ α Y ^ α
                    theorem power_vii' (X Y : OrderOfMagnitude) {α : } ( : α > 0) :
                    X < Y X ^ α < Y ^ α
                    theorem power_viii {X Y : OrderOfMagnitude} {α : } ( : α 0) (hXY : X Y) :
                    X ^ α Y ^ α
                    theorem power_ix (X Y : OrderOfMagnitude) {α : } ( : α < 0) :
                    X Y X ^ α Y ^ α
                    theorem power_ix' (X Y : OrderOfMagnitude) {α : } ( : α < 0) :
                    X < Y X ^ α > Y ^ α
                    theorem power_x (X : OrderOfMagnitude) (α β : ) :
                    X ^ (α + β) = X ^ α * X ^ β
                    @[reducible, inline]
                    Equations
                    Instances For
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        @[simp]
                        theorem OrderOfMagnitude.log_add (X Y : OrderOfMagnitude) :
                        log (X + Y) = max (log X) (log Y)
                        @[simp]
                        @[simp]
                        Equations
                        • One or more equations did not get rendered due to their size.
                        @[simp]
                        theorem OrderOfMagnitude.log_pow (X : OrderOfMagnitude) (α : ) :
                        log (X ^ α) = α log X
                        @[reducible, inline]
                        abbrev internal (E : Set ) :
                        Equations
                        Instances For
                          @[reducible, inline]
                          abbrev is_internal (E : Set ℝ*) :
                          Equations
                          Instances For
                            theorem mem_internal (x : ) (E : Set ) :
                            theorem saturation (I : Set ℝ*) (hI : ∀ (n : ), is_internal (I n)) (hI' : ∀ (n : ), (I n).Nonempty) (hI'' : ∀ (n : ), I (n + 1) I n) :
                            ∃ (x : ℝ*), ∀ (n : ), x I n
                            theorem Hyperreal.Ioi_internal (a b : ℝ*) :
                            ∃ (E : Set ), Set.Ioo a b = ⋂ (n : ), internal (E n)
                            theorem Hyperreal.completeness (a b : ℝ*) (ha : Monotone a) (hb : Antitone b) (hab : ∀ (n : ), a n < b n) :
                            ∃ (x : ℝ*), ∀ (n : ), a n < x x < b n