Documentation

Init.Data.Fin.Fold

@[inline]
def Fin.foldl {α : Sort u_1} (n : Nat) (f : αFin nα) (init : α) :
α

Combine all the values that can be represented by Fin n with an initial value, starting at 0 and nesting to the left.

Example:

  • Fin.foldl 3 (· + ·.val) (0 : Nat) = ((0 + (0 : Fin 3).val) + (1 : Fin 3).val) + (2 : Fin 3).val
Equations
@[specialize #[]]
def Fin.foldl.loop {α : Sort u_1} (n : Nat) (f : αFin nα) (x : α) (i : Nat) :
α

Inner loop for Fin.foldl. Fin.foldl.loop n f x i = f (f (f x i) ...) (n-1)

Equations
@[inline]
def Fin.foldr {α : Sort u_1} (n : Nat) (f : Fin nαα) (init : α) :
α

Combine all the values that can be represented by Fin n with an initial value, starting at n - 1 and nesting to the right.

Example:

  • Fin.foldr 3 (·.val + ·) (0 : Nat) = (0 : Fin 3).val + ((1 : Fin 3).val + ((2 : Fin 3).val + 0))
Equations
@[specialize #[]]
def Fin.foldr.loop {α : Sort u_1} (n : Nat) (f : Fin nαα) (i : Nat) :
i nαα

Inner loop for Fin.foldr. Fin.foldr.loop n f i x = f 0 (f ... (f (i-1) x))

Equations
@[inline]
def Fin.foldlM {m : Type u_1 → Type u_2} {α : Type u_1} [Monad m] (n : Nat) (f : αFin nm α) (init : α) :
m α

Folds a monadic function over all the values in Fin n from left to right, starting with 0.

It is the sequence of steps:

Fin.foldlM n f x₀ = do
  let x₁ ← f x₀ 0
  let x₂ ← f x₁ 1
  ...
  let xₙ ← f xₙ₋₁ (n-1)
  pure xₙ
Equations
@[specialize #[]]
def Fin.foldlM.loop {m : Type u_1 → Type u_2} {α : Type u_1} [Monad m] (n : Nat) (f : αFin nm α) (x : α) (i : Nat) :
m α

Inner loop for Fin.foldlM.

Fin.foldlM.loop n f xᵢ i = do
  let xᵢ₊₁ ← f xᵢ i
  ...
  let xₙ ← f xₙ₋₁ (n-1)
  pure xₙ
Equations
@[inline]
def Fin.foldrM {m : Type u_1 → Type u_2} {α : Type u_1} [Monad m] (n : Nat) (f : Fin nαm α) (init : α) :
m α

Folds a monadic function over Fin n from right to left, starting with n-1.

It is the sequence of steps:

Fin.foldrM n f xₙ = do
  let xₙ₋₁ ← f (n-1) xₙ
  let xₙ₋₂ ← f (n-2) xₙ₋₁
  ...
  let x₀ ← f 0 x₁
  pure x₀
Equations
@[specialize #[]]
def Fin.foldrM.loop {m : Type u_1 → Type u_2} {α : Type u_1} [Monad m] (n : Nat) (f : Fin nαm α) :
{ i : Nat // i n }αm α

Inner loop for Fin.foldrM.

Fin.foldrM.loop n f i xᵢ = do
  let xᵢ₋₁ ← f (i-1) xᵢ
  ...
  let x₁ ← f 1 x₂
  let x₀ ← f 0 x₁
  pure x₀
Equations

foldlM #

theorem Fin.foldlM_loop_lt {m : Type u_1 → Type u_2} {α : Type u_1} {n i : Nat} [Monad m] (f : αFin nm α) (x : α) (h : i < n) :
foldlM.loop n f x i = do let xf x i, h foldlM.loop n f x (i + 1)
theorem Fin.foldlM_loop_eq {m : Type u_1 → Type u_2} {α : Type u_1} {n : Nat} [Monad m] (f : αFin nm α) (x : α) :
foldlM.loop n f x n = pure x
@[irreducible]
theorem Fin.foldlM_loop {m : Type u_1 → Type u_2} {α : Type u_1} {n i : Nat} [Monad m] (f : αFin (n + 1)m α) (x : α) (h : i < n + 1) :
foldlM.loop (n + 1) f x i = do let xf x i, h foldlM.loop n (fun (x : α) (j : Fin n) => f x j.succ) x i
@[simp]
theorem Fin.foldlM_zero {m : Type u_1 → Type u_2} {α : Type u_1} [Monad m] (f : αFin 0m α) (x : α) :
foldlM 0 f x = pure x
theorem Fin.foldlM_succ {m : Type u_1 → Type u_2} {α : Type u_1} {n : Nat} [Monad m] (f : αFin (n + 1)m α) (x : α) :
foldlM (n + 1) f x = f x 0 >>= foldlM n fun (x : α) (j : Fin n) => f x j.succ

foldrM #

theorem Fin.foldrM_loop_zero {m : Type u_1 → Type u_2} {n : Nat} {α : Type u_1} [Monad m] (f : Fin nαm α) (x : α) :
foldrM.loop n f 0, x = pure x
theorem Fin.foldrM_loop_succ {m : Type u_1 → Type u_2} {n : Nat} {α : Type u_1} {i : Nat} [Monad m] (f : Fin nαm α) (x : α) (h : i < n) :
foldrM.loop n f i + 1, h x = f i, h x >>= foldrM.loop n f i,
theorem Fin.foldrM_loop {m : Type u_1 → Type u_2} {n : Nat} {α : Type u_1} {i : Nat} [Monad m] [LawfulMonad m] (f : Fin (n + 1)αm α) (x : α) (h : i + 1 n + 1) :
foldrM.loop (n + 1) f i + 1, h x = foldrM.loop n (fun (j : Fin n) => f j.succ) i, x >>= f 0
@[simp]
theorem Fin.foldrM_zero {m : Type u_1 → Type u_2} {α : Type u_1} [Monad m] (f : Fin 0αm α) (x : α) :
foldrM 0 f x = pure x
theorem Fin.foldrM_succ {m : Type u_1 → Type u_2} {n : Nat} {α : Type u_1} [Monad m] [LawfulMonad m] (f : Fin (n + 1)αm α) (x : α) :
foldrM (n + 1) f x = foldrM n (fun (i : Fin n) => f i.succ) x >>= f 0

foldl #

theorem Fin.foldl_loop_lt {α : Sort u_1} {n i : Nat} (f : αFin nα) (x : α) (h : i < n) :
foldl.loop n f x i = foldl.loop n f (f x i, h) (i + 1)
theorem Fin.foldl_loop_eq {α : Sort u_1} {n : Nat} (f : αFin nα) (x : α) :
foldl.loop n f x n = x
@[irreducible]
theorem Fin.foldl_loop {α : Sort u_1} {n i : Nat} (f : αFin (n + 1)α) (x : α) (h : i < n + 1) :
foldl.loop (n + 1) f x i = foldl.loop n (fun (x : α) (j : Fin n) => f x j.succ) (f x i, h) i
@[simp]
theorem Fin.foldl_zero {α : Sort u_1} (f : αFin 0α) (x : α) :
foldl 0 f x = x
theorem Fin.foldl_succ {α : Sort u_1} {n : Nat} (f : αFin (n + 1)α) (x : α) :
foldl (n + 1) f x = foldl n (fun (x : α) (i : Fin n) => f x i.succ) (f x 0)
theorem Fin.foldl_succ_last {α : Sort u_1} {n : Nat} (f : αFin (n + 1)α) (x : α) :
foldl (n + 1) f x = f (foldl n (fun (x1 : α) (x2 : Fin n) => f x1 x2.castSucc) x) (last n)
theorem Fin.foldl_eq_foldlM {α : Type u_1} {n : Nat} (f : αFin nα) (x : α) :
foldl n f x = foldlM n f x

foldr #

theorem Fin.foldr_loop_zero {n : Nat} {α : Sort u_1} (f : Fin nαα) (x : α) :
foldr.loop n f 0 x = x
theorem Fin.foldr_loop_succ {n : Nat} {α : Sort u_1} {i : Nat} (f : Fin nαα) (x : α) (h : i < n) :
foldr.loop n f (i + 1) h x = foldr.loop n f i (f i, h x)
theorem Fin.foldr_loop {n : Nat} {α : Sort u_1} {i : Nat} (f : Fin (n + 1)αα) (x : α) (h : i + 1 n + 1) :
foldr.loop (n + 1) f (i + 1) h x = f 0 (foldr.loop n (fun (j : Fin n) => f j.succ) i x)
@[simp]
theorem Fin.foldr_zero {α : Sort u_1} (f : Fin 0αα) (x : α) :
foldr 0 f x = x
theorem Fin.foldr_succ {n : Nat} {α : Sort u_1} (f : Fin (n + 1)αα) (x : α) :
foldr (n + 1) f x = f 0 (foldr n (fun (i : Fin n) => f i.succ) x)
theorem Fin.foldr_succ_last {n : Nat} {α : Sort u_1} (f : Fin (n + 1)αα) (x : α) :
foldr (n + 1) f x = foldr n (fun (x : Fin n) => f x.castSucc) (f (last n) x)
theorem Fin.foldr_eq_foldrM {n : Nat} {α : Type u_1} (f : Fin nαα) (x : α) :
foldr n f x = foldrM n f x
theorem Fin.foldl_rev {n : Nat} {α : Sort u_1} (f : Fin nαα) (x : α) :
foldl n (fun (x : α) (i : Fin n) => f i.rev x) x = foldr n f x
theorem Fin.foldr_rev {α : Sort u_1} {n : Nat} (f : αFin nα) (x : α) :
foldr n (fun (i : Fin n) (x : α) => f x i.rev) x = foldl n f x