Documentation

Init.Data.Fin.Basic

instance Fin.coeToNat {n : Nat} :
Equations
def Fin.elim0 {α : Sort u} :
Fin 0α

The type Fin 0 is uninhabited, so it can be used to derive any result whatsoever.

This is similar to Empty.elim. It can be thought of as a compiler-checked assertion that a code path is unreachable, or a logical contradiction from which False and thus anything else could be derived.

Equations
def Fin.succ {n : Nat} :
Fin nFin (n + 1)

The successor, with an increased bound.

This differs from adding 1, which instead wraps around.

Examples:

Equations
  • i, h.succ = i + 1,
def Fin.ofNat' (n : Nat) [NeZero n] (a : Nat) :
Fin n

Returns a modulo n as a Fin n.

The assumption NeZero n ensures that Fin n is nonempty.

Equations
@[deprecated Fin.ofNat' (since := "2024-11-27")]
def Fin.ofNat {n : Nat} (a : Nat) :
Fin (n + 1)

Returns a modulo n + 1 as a Fin n.succ.

Equations
@[inline]
def Fin.toNat {n : Nat} (i : Fin n) :

Extracts the underlying Nat value.

This function is a synonym for Fin.val, which is the simp normal form. Fin.val is also a coercion, so values of type Fin n are automatically converted to Nats as needed.

Equations
@[simp]
theorem Fin.toNat_eq_val {n : Nat} {i : Fin n} :
i.toNat = i
def Fin.add {n : Nat} :
Fin nFin nFin n

Addition modulo n, usually invoked via the + operator.

Examples:

Equations
  • a, h.add b, isLt = ⟨(a + b) % n,
def Fin.mul {n : Nat} :
Fin nFin nFin n

Multiplication modulo n, usually invoked via the * operator.

Examples:

Equations
  • a, h.mul b, isLt = a * b % n,
def Fin.sub {n : Nat} :
Fin nFin nFin n

Subtraction modulo n, usually invoked via the - operator.

Examples:

Equations
  • a, h.sub b, isLt = ⟨(n - b + a) % n,

Remark: land/lor can be defined without using (% n), but we are trying to minimize the number of Nat theorems needed to bootstrap Lean.

def Fin.mod {n : Nat} :
Fin nFin nFin n

Modulus of bounded numbers, usually invoked via the % operator.

The resulting value is that computed by the % operator on Nat.

Equations
  • a, h.mod b, isLt = a % b,
def Fin.div {n : Nat} :
Fin nFin nFin n

Division of bounded numbers, usually invoked via the / operator.

The resulting value is that computed by the / operator on Nat. In particular, the result of division by 0 is 0.

Examples:

Equations
  • a, h.div b, isLt = a / b,
def Fin.modn {n : Nat} :
Fin nNatFin n

Modulus of bounded numbers with respect to a Nat.

The resulting value is that computed by the % operator on Nat.

Equations
  • a, h.modn x✝ = a % x✝,
def Fin.land {n : Nat} :
Fin nFin nFin n

Bitwise and.

Equations
  • a, h.land b, isLt = a.land b % n,
def Fin.lor {n : Nat} :
Fin nFin nFin n

Bitwise or.

Equations
  • a, h.lor b, isLt = a.lor b % n,
def Fin.xor {n : Nat} :
Fin nFin nFin n

Bitwise xor (“exclusive or”).

Equations
  • a, h.xor b, isLt = a.xor b % n,
def Fin.shiftLeft {n : Nat} :
Fin nFin nFin n

Bitwise left shift of bounded numbers, with wraparound on overflow.

Examples:

  • (1 : Fin 10) <<< (1 : Fin 10) = (2 : Fin 10)
  • (1 : Fin 10) <<< (3 : Fin 10) = (8 : Fin 10)
  • (1 : Fin 10) <<< (4 : Fin 10) = (6 : Fin 10)
Equations
def Fin.shiftRight {n : Nat} :
Fin nFin nFin n

Bitwise right shift of bounded numbers.

This operator corresponds to logical rather than arithmetic bit shifting. The new bits are always 0.

Examples:

  • (15 : Fin 16) >>> (1 : Fin 16) = (7 : Fin 16)
  • (15 : Fin 16) >>> (2 : Fin 16) = (3 : Fin 16)
  • (15 : Fin 17) >>> (2 : Fin 17) = (3 : Fin 17)
Equations
instance Fin.instAdd {n : Nat} :
Add (Fin n)
Equations
instance Fin.instSub {n : Nat} :
Sub (Fin n)
Equations
instance Fin.instMul {n : Nat} :
Mul (Fin n)
Equations
instance Fin.instMod {n : Nat} :
Mod (Fin n)
Equations
instance Fin.instDiv {n : Nat} :
Div (Fin n)
Equations
instance Fin.instAndOp {n : Nat} :
Equations
instance Fin.instOrOp {n : Nat} :
OrOp (Fin n)
Equations
instance Fin.instXor {n : Nat} :
Xor (Fin n)
Equations
instance Fin.instShiftLeft {n : Nat} :
Equations
instance Fin.instShiftRight {n : Nat} :
Equations
instance Fin.instOfNat {n : Nat} [NeZero n] {i : Nat} :
OfNat (Fin n) i
Equations
instance Fin.instInhabited {n : Nat} [NeZero n] :
Equations
@[simp]
theorem Fin.zero_eta {n : Nat} :
0, = 0
theorem Fin.ne_of_val_ne {n : Nat} {i j : Fin n} (h : i j) :
i j
theorem Fin.val_ne_of_ne {n : Nat} {i j : Fin n} (h : i j) :
i j
theorem Fin.modn_lt {n m : Nat} (i : Fin n) :
m > 0(i.modn m) < m
theorem Fin.val_lt_of_le {n b : Nat} (i : Fin b) (h : b n) :
i < n
theorem Fin.pos {n : Nat} (i : Fin n) :
0 < n

If you actually have an element of Fin n, then the n is always positive

@[inline]
def Fin.last (n : Nat) :
Fin (n + 1)

The greatest value of Fin (n+1), namely n.

Examples:

Equations
@[inline]
def Fin.castLT {n m : Nat} (i : Fin m) (h : i < n) :
Fin n

Replaces the bound with another that is suitable for the value.

The proof embedded in i can be used to cast to a larger bound even if the concrete value is not known.

Examples:

example : Fin 12 := (7 : Fin 10).castLT (by decide : 7 < 12)
example (i : Fin 10) : Fin 12 :=
  i.castLT <| by
    cases i; simp; omega
Equations
@[inline]
def Fin.castLE {n m : Nat} (h : n m) (i : Fin n) :
Fin m

Coarsens a bound to one at least as large.

See also Fin.castAdd for a version that represents the larger bound with addition rather than an explicit inequality proof.

Equations
@[inline]
def Fin.cast {n m : Nat} (eq : n = m) (i : Fin n) :
Fin m

Uses a proof that two bounds are equal to allow a value bounded by one to be used with the other.

In other words, when eq : n = m, Fin.cast eq i converts i : Fin n into a Fin m.

Equations
@[inline]
def Fin.castAdd {n : Nat} (m : Nat) :
Fin nFin (n + m)

Coarsens a bound to one at least as large.

See also Fin.natAdd and Fin.addNat for addition functions that increase the bound, and Fin.castLE for a version that uses an explicit inequality proof.

Equations
@[inline]
def Fin.castSucc {n : Nat} :
Fin nFin (n + 1)

Coarsens a bound by one.

Equations
def Fin.addNat {n : Nat} (i : Fin n) (m : Nat) :
Fin (n + m)

Adds a natural number to a Fin, increasing the bound.

This is a generalization of Fin.succ.

Fin.natAdd is a version of this function that takes its Nat parameter first.

Examples:

Equations
def Fin.natAdd {m : Nat} (n : Nat) (i : Fin m) :
Fin (n + m)

Adds a natural number to a Fin, increasing the bound.

This is a generalization of Fin.succ.

Fin.addNat is a version of this function that takes its Nat parameter second.

Examples:

Equations
@[inline]
def Fin.rev {n : Nat} (i : Fin n) :
Fin n

Replaces a value with its difference from the largest value in the type.

Considering the values of Fin n as a sequence 0, 1, …, n-2, n-1, Fin.rev finds the corresponding element of the reversed sequence. In other words, it maps 0 to n-1, 1 to n-2, ..., and n-1 to 0.

Examples:

Equations
  • i.rev = n - (i + 1),
@[inline]
def Fin.subNat {n : Nat} (m : Nat) (i : Fin (n + m)) (h : m i) :
Fin n

Subtraction of a natural number from a Fin, with the bound narrowed.

This is a generalization of Fin.pred. It is guaranteed to not underflow or wrap around.

Examples:

Equations
@[inline]
def Fin.pred {n : Nat} (i : Fin (n + 1)) (h : i 0) :
Fin n

The predecessor of a non-zero element of Fin (n+1), with the bound decreased.

Examples:

Equations
theorem Fin.val_inj {n : Nat} {a b : Fin n} :
a = b a = b
theorem Fin.val_congr {n : Nat} {a b : Fin n} (h : a = b) :
a = b
theorem Fin.val_le_of_le {n : Nat} {a b : Fin n} (h : a b) :
a b
theorem Fin.val_le_of_ge {n : Nat} {a b : Fin n} (h : a b) :
b a
theorem Fin.val_add_one_le_of_lt {n : Nat} {a b : Fin n} (h : a < b) :
a + 1 b
theorem Fin.val_add_one_le_of_gt {n : Nat} {a b : Fin n} (h : a > b) :
b + 1 a
theorem Fin.exists_iff {n : Nat} {p : Fin nProp} :
( (i : Fin n), p i) (i : Nat), (h : i < n), p i, h