Documentation

Init.Data.BitVec.Basic

We define the basic algebraic structure of bitvectors. We choose the Fin representation over others for its relative efficiency (Lean has special support for Nat), and the fact that bitwise operations on Fin are already defined. Some other possible representations are List Bool, { l : List Bool // l.length = w }, Fin w → Bool.

We define many of the bitvector operations from the QF_BV logic. of SMT-LIB v2.

@[inline, deprecated BitVec.ofNatLT (since := "2025-02-13")]
def BitVec.ofNatLt {n : Nat} (i : Nat) (p : i < 2 ^ n) :

The BitVec with value i, given a proof that i < 2^n.

Equations
instance BitVec.natCastInst {w : Nat} :
Equations
@[simp]

Theorem for normalizing the bitvector literal representation.

@[simp]
theorem BitVec.natCast_eq_ofNat (w x : Nat) :
x = BitVec.ofNat w x

All empty bitvectors are equal

@[reducible, inline]
abbrev BitVec.nil :

The empty bitvector.

Equations
theorem BitVec.eq_nil (x : BitVec 0) :
x = nil

Every bitvector of length 0 is equal to nil, i.e., there is only one empty bitvector

def BitVec.zero (n : Nat) :

Returns a bitvector of size n where all bits are 0.

Equations
Equations

Returns a bitvector of size n where all bits are 1.

Equations
Instances For
@[inline]
def BitVec.getLsb' {w : Nat} (x : BitVec w) (i : Fin w) :

Returns the ith least significant bit.

This will be renamed getLsb after the existing deprecated alias is removed.

Equations
@[inline]
def BitVec.getLsb? {w : Nat} (x : BitVec w) (i : Nat) :

Returns the ith least significant bit, or none if i ≥ w.

Equations
@[inline]
def BitVec.getMsb' {w : Nat} (x : BitVec w) (i : Fin w) :

Returns the ith most significant bit.

This will be renamed BitVec.getMsb after the existing deprecated alias is removed.

Equations
@[inline]
def BitVec.getMsb? {w : Nat} (x : BitVec w) (i : Nat) :

Returns the ith most significant bit or none if i ≥ w.

Equations
@[inline]
def BitVec.getLsbD {w : Nat} (x : BitVec w) (i : Nat) :

Returns the ith least significant bit or false if i ≥ w.

Equations
@[inline]
def BitVec.getMsbD {w : Nat} (x : BitVec w) (i : Nat) :

Returns the ith most significant bit, or false if i ≥ w.

Equations
@[inline]
def BitVec.msb {n : Nat} (x : BitVec n) :

Returns the most significant bit in a bitvector.

Equations
instance BitVec.instGetElemNatBoolLt {w : Nat} :
GetElem (BitVec w) Nat Bool fun (x : BitVec w) (i : Nat) => i < w
Equations
@[simp]
theorem BitVec.getLsb'_eq_getElem {w : Nat} (x : BitVec w) (i : Fin w) :
x.getLsb' i = x[i]

We prefer x[i] as the simp normal form for getLsb'

@[simp]
theorem BitVec.getLsb?_eq_getElem? {w : Nat} (x : BitVec w) (i : Nat) :
x.getLsb? i = x[i]?

We prefer x[i]? as the simp normal form for getLsb?

theorem BitVec.getElem_eq_testBit_toNat {w : Nat} (x : BitVec w) (i : Nat) (h : i < w) :
@[simp]
theorem BitVec.getLsbD_eq_getElem {w : Nat} {x : BitVec w} {i : Nat} (h : i < w) :
x.getLsbD i = x[i]
def BitVec.toInt {n : Nat} (x : BitVec n) :

Interprets the bitvector as an integer stored in two's complement form.

Equations
def BitVec.ofInt (n : Nat) (i : Int) :

Converts an integer to its two's complement representation as a bitvector of the given width n, over- and underflowing as needed.

The underlying Nat is (2^n + (i mod 2^n)) mod 2^n. Converting the bitvector back to an Int with BitVec.toInt results in the value i.bmod (2^n).

Equations
instance BitVec.instIntCast {w : Nat} :
Equations

Notation for bitvector literals. i#n is a shorthand for BitVec.ofNat n i.

Conventions for notations in identifiers:

  • The recommended spelling of 0#n in identifiers is zero (not ofNat_zero).

  • The recommended spelling of 1#n in identifiers is one (not ofNat_one).

Equations
  • One or more equations did not get rendered due to their size.

Unexpander for bitvector literals.

Equations
  • One or more equations did not get rendered due to their size.

Notation for bitvector literals without truncation. i#'lt is a shorthand for BitVec.ofNatLT i lt.

Equations
  • One or more equations did not get rendered due to their size.

Unexpander for bitvector literals without truncation.

Equations
  • One or more equations did not get rendered due to their size.
def BitVec.toHex {n : Nat} (x : BitVec n) :

Converts a bitvector into a fixed-width hexadecimal number with enough digits to represent it.

If n is 0, then one digit is returned. Otherwise, ⌊(n + 3) / 4⌋ digits are returned.

Equations
instance BitVec.instRepr {n : Nat} :
Equations
Equations
def BitVec.neg {n : Nat} (x : BitVec n) :

Negation of bitvectors. This can be interpreted as either signed or unsigned negation modulo 2^n. Usually accessed via the - prefix operator.

SMT-LIB name: bvneg.

Equations
instance BitVec.instNeg {n : Nat} :
Equations
def BitVec.abs {n : Nat} (x : BitVec n) :

Returns the absolute value of a signed bitvector.

Equations
def BitVec.mul {n : Nat} (x y : BitVec n) :

Multiplies two bitvectors. This can be interpreted as either signed or unsigned multiplication modulo 2^n. Usually accessed via the * operator.

SMT-LIB name: bvmul.

Equations
instance BitVec.instMul {n : Nat} :
Equations
def BitVec.udiv {n : Nat} (x y : BitVec n) :

Unsigned division of bitvectors using the Lean convention where division by zero returns zero. Usually accessed via the / operator.

Equations
instance BitVec.instDiv {n : Nat} :
Equations
def BitVec.umod {n : Nat} (x y : BitVec n) :

Unsigned modulo for bitvectors. Usually accessed via the % operator.

SMT-LIB name: bvurem.

Equations
instance BitVec.instMod {n : Nat} :
Equations
def BitVec.smtUDiv {n : Nat} (x y : BitVec n) :

Unsigned division of bitvectors using the SMT-LIB convention, where division by zero returns BitVector.allOnes n.

SMT-LIB name: bvudiv.

Equations
def BitVec.sdiv {n : Nat} (x y : BitVec n) :

Signed T-division (using the truncating rounding convention) for bitvectors. This function obeys the Lean convention that division by zero returns zero.

Examples:

  • (7#4).sdiv 2 = 3#4
  • (-9#4).sdiv 2 = -4#4
  • (5#4).sdiv -2 = -2#4
  • (-7#4).sdiv (-2) = 3#4
Equations
def BitVec.smtSDiv {n : Nat} (x y : BitVec n) :

Signed division for bitvectors using the SMT-LIB using the SMT-LIB convention, where division by zero returns BitVector.allOnes n.

Specifically, x.smtSDiv 0 = if x >= 0 then -1 else 1

SMT-LIB name: bvsdiv.

Equations
def BitVec.srem {n : Nat} (x y : BitVec n) :

Remainder for signed division rounding to zero.

SMT-LIB name: bvsrem.

Equations
def BitVec.smod {m : Nat} (x y : BitVec m) :

Remainder for signed division rounded to negative infinity.

SMT-LIB name: bvsmod.

Equations
  • One or more equations did not get rendered due to their size.

Turns a Bool into a bitvector of length 1.

Equations
def BitVec.fill (w : Nat) (b : Bool) :

Fills a bitvector with w copies of the bit b.

Equations
def BitVec.ult {n : Nat} (x y : BitVec n) :

Unsigned less-than for bitvectors.

SMT-LIB name: bvult.

Equations
def BitVec.ule {n : Nat} (x y : BitVec n) :

Unsigned less-than-or-equal-to for bitvectors.

SMT-LIB name: bvule.

Equations
def BitVec.slt {n : Nat} (x y : BitVec n) :

Signed less-than for bitvectors.

SMT-LIB name: bvslt.

Examples:

Equations
def BitVec.sle {n : Nat} (x y : BitVec n) :

Signed less-than-or-equal-to for bitvectors.

SMT-LIB name: bvsle.

Equations
@[inline]
def BitVec.cast {n m : Nat} (eq : n = m) (x : BitVec n) :

If two natural numbers n and m are equal, then a bitvector of width n is also a bitvector of width m.

Using x.cast eq should be preferred over eq ▸ x because there are special-purpose simp lemmas that can more consistently simplify BitVec.cast away.

Equations
@[simp]
theorem BitVec.cast_ofNat {n m : Nat} (h : n = m) (x : Nat) :
@[simp]
theorem BitVec.cast_cast {n m k : Nat} (h₁ : n = m) (h₂ : m = k) (x : BitVec n) :
BitVec.cast h₂ (BitVec.cast h₁ x) = BitVec.cast x
@[simp]
theorem BitVec.cast_eq {n : Nat} (h : n = n) (x : BitVec n) :
def BitVec.extractLsb' {n : Nat} (start len : Nat) (x : BitVec n) :
BitVec len

Extracts the bits start to start + len - 1 from a bitvector of size n to yield a new bitvector of size len. If start + len > n, then the bitvector is zero-extended.

Equations
def BitVec.extractLsb {n : Nat} (hi lo : Nat) (x : BitVec n) :
BitVec (hi - lo + 1)

Extracts the bits from hi down to lo (both inclusive) from a bitvector, which is implicitly zero-extended if necessary.

The resulting bitvector has size hi - lo + 1.

SMT-LIB name: extract.

Equations
def BitVec.setWidth' {n w : Nat} (le : n w) (x : BitVec n) :

Increases the width of a bitvector to one that is at least as large by zero-extending it.

This is a constant-time operation because the underlying Nat is unmodified; because the new width is at least as large as the old one, no overflow is possible.

Equations
@[reducible, inline, deprecated BitVec.setWidth' (since := "2024-09-18")]
abbrev BitVec.zeroExtend' {n w : Nat} (le : n w) (x : BitVec n) :

Increases the width of a bitvector to one that is at least as large by zero-extending it.

This is a constant-time operation because the underlying Nat is unmodified; because the new width is at least as large as the old one, no overflow is possible.

Equations
def BitVec.shiftLeftZeroExtend {w : Nat} (msbs : BitVec w) (m : Nat) :
BitVec (w + m)

Returns zeroExtend (w+n) x <<< n without needing to compute x % 2^(2+n).

Equations
def BitVec.setWidth {w : Nat} (v : Nat) (x : BitVec w) :

Transforms a bitvector of length w into a bitvector of length v, padding with 0 as needed.

The specific behavior depends on the relationship between the starting width w and the final width v:

  • If v > w, it is zero-extended; the high bits are padded with zeroes until the bitvector has v bits.
  • If v = w, the bitvector is returned unchanged.
  • If v < w, the high bits are truncated.

BitVec.setWidth, BitVec.zeroExtend, and BitVec.truncate are aliases for this operation.

SMT-LIB name: zero_extend.

Equations
@[reducible, inline]
abbrev BitVec.zeroExtend {w : Nat} (v : Nat) (x : BitVec w) :

Transforms a bitvector of length w into a bitvector of length v, padding with 0 as needed.

The specific behavior depends on the relationship between the starting width w and the final width v:

  • If v > w, it is zero-extended; the high bits are padded with zeroes until the bitvector has v bits.
  • If v = w, the bitvector is returned unchanged.
  • If v < w, the high bits are truncated.

BitVec.setWidth, BitVec.zeroExtend, and BitVec.truncate are aliases for this operation.

SMT-LIB name: zero_extend.

Equations
@[reducible, inline]
abbrev BitVec.truncate {w : Nat} (v : Nat) (x : BitVec w) :

Transforms a bitvector of length w into a bitvector of length v, padding with 0 as needed.

The specific behavior depends on the relationship between the starting width w and the final width v:

  • If v > w, it is zero-extended; the high bits are padded with zeroes until the bitvector has v bits.
  • If v = w, the bitvector is returned unchanged.
  • If v < w, the high bits are truncated.

BitVec.setWidth, BitVec.zeroExtend, and BitVec.truncate are aliases for this operation.

SMT-LIB name: zero_extend.

Equations
def BitVec.signExtend {w : Nat} (v : Nat) (x : BitVec w) :

Transforms a bitvector of length w into a bitvector of length v, padding as needed with the most significant bit's value.

If x is an empty bitvector, then the sign is treated as zero.

SMT-LIB name: sign_extend.

Equations
def BitVec.and {n : Nat} (x y : BitVec n) :

Bitwise and for bitvectors. Usually accessed via the &&& operator.

SMT-LIB name: bvand.

Example:

  • 0b1010#4 &&& 0b0110#4 = 0b0010#4
Equations
instance BitVec.instAndOp {w : Nat} :
Equations
def BitVec.or {n : Nat} (x y : BitVec n) :

Bitwise or for bitvectors. Usually accessed via the ||| operator.

SMT-LIB name: bvor.

Example:

  • 0b1010#4 ||| 0b0110#4 = 0b1110#4
Equations
instance BitVec.instOrOp {w : Nat} :
Equations
def BitVec.xor {n : Nat} (x y : BitVec n) :

Bitwise xor for bitvectors. Usually accessed via the ^^^ operator.

SMT-LIB name: bvxor.

Example:

  • 0b1010#4 ^^^ 0b0110#4 = 0b1100#4
Equations
instance BitVec.instXor {w : Nat} :
Equations
def BitVec.not {n : Nat} (x : BitVec n) :

Bitwise complement for bitvectors. Usually accessed via the ~~~ prefix operator.

SMT-LIB name: bvnot.

Example:

  • ~~~(0b0101#4) == 0b1010
Equations
Equations
def BitVec.shiftLeft {n : Nat} (x : BitVec n) (s : Nat) :

Shifts a bitvector to the left. The low bits are filled with zeros. As a numeric operation, this is equivalent to x * 2^s, modulo 2^n.

SMT-LIB name: bvshl except this operator uses a Nat shift value.

Equations
def BitVec.ushiftRight {n : Nat} (x : BitVec n) (s : Nat) :

Shifts a bitvector to the right. This is a logical right shift - the high bits are filled with zeros.

As a numeric operation, this is equivalent to x / 2^s, rounding down.

SMT-LIB name: bvlshr except this operator uses a Nat shift value.

Equations
def BitVec.sshiftRight {n : Nat} (x : BitVec n) (s : Nat) :

Shifts a bitvector to the right. This is an arithmetic right shift - the high bits are filled with most significant bit's value.

As a numeric operation, this is equivalent to x.toInt >>> s.

SMT-LIB name: bvashr except this operator uses a Nat shift value.

Equations
instance BitVec.instHShiftLeft {m n : Nat} :
Equations
Equations
def BitVec.sshiftRight' {n m : Nat} (a : BitVec n) (s : BitVec m) :

Shifts a bitvector to the right. This is an arithmetic right shift - the high bits are filled with most significant bit's value.

As a numeric operation, this is equivalent to a.toInt >>> s.toNat.

SMT-LIB name: bvashr.

Equations
def BitVec.rotateLeftAux {w : Nat} (x : BitVec w) (n : Nat) :

Auxiliary function for rotateLeft, which does not take into account the case where the rotation amount is greater than the bitvector width.

Equations
def BitVec.rotateLeft {w : Nat} (x : BitVec w) (n : Nat) :

Rotates the bits in a bitvector to the left.

All the bits of x are shifted to higher positions, with the top n bits wrapping around to fill the vacated low bits.

SMT-LIB name: rotate_left, except this operator uses a Nat shift amount.

Example:

Equations
def BitVec.rotateRightAux {w : Nat} (x : BitVec w) (n : Nat) :

Auxiliary function for rotateRight, which does not take into account the case where the rotation amount is greater than the bitvector width.

Equations
def BitVec.rotateRight {w : Nat} (x : BitVec w) (n : Nat) :

Rotates the bits in a bitvector to the right.

All the bits of x are shifted to lower positions, with the bottom n bits wrapping around to fill the vacated high bits.

SMT-LIB name: rotate_right, except this operator uses a Nat shift amount.

Example:

Equations
def BitVec.append {n m : Nat} (msbs : BitVec n) (lsbs : BitVec m) :
BitVec (n + m)

Concatenates two bitvectors using the “big-endian” convention that the more significant input is on the left. Usually accessed via the ++ operator.

SMT-LIB name: concat.

Example:

  • 0xAB#8 ++ 0xCD#8 = 0xABCD#16.
Equations
instance BitVec.instHAppendHAddNat {w v : Nat} :
HAppend (BitVec w) (BitVec v) (BitVec (w + v))
Equations
def BitVec.replicate {w : Nat} (i : Nat) :
BitVec wBitVec (w * i)

Concatenates i copies of x into a new vector of length w * i.

Equations

Cons and Concat #

We give special names to the operations of adding a single bit to either end of a bitvector. We follow the precedent of Vector.cons/Vector.concat both for the name, and for the decision to have the resulting size be n + 1 for both operations (rather than 1 + n, which would be the result of appending a single bit to the front in the naive implementation).

def BitVec.concat {n : Nat} (msbs : BitVec n) (lsb : Bool) :
BitVec (n + 1)

Append a single bit to the end of a bitvector, using big endian order (see append). That is, the new bit is the least significant bit.

Equations
def BitVec.shiftConcat {n : Nat} (x : BitVec n) (b : Bool) :

Shifts all bits of x to the left by 1 and sets the least significant bit to b.

This is a non-dependent version of BitVec.concat that does not change the total bitwidth.

Equations
def BitVec.cons {n : Nat} (msb : Bool) (lsbs : BitVec n) :
BitVec (n + 1)

Prepends a single bit to the front of a bitvector, using big-endian order (see append).

The new bit is the most significant bit.

Equations
theorem BitVec.append_ofBool {w : Nat} (msbs : BitVec w) (lsb : Bool) :
msbs ++ ofBool lsb = msbs.concat lsb
theorem BitVec.ofBool_append {w : Nat} (msb : Bool) (lsbs : BitVec w) :
ofBool msb ++ lsbs = BitVec.cast (cons msb lsbs)
def BitVec.twoPow (w i : Nat) :

twoPow w i is the bitvector 2^i if i < w, and 0 otherwise. In other words, it is 2 to the power i.

From the bitwise point of view, it has the ith bit as 1 and all other bits as 0.

Equations
@[irreducible]
def BitVec.hash {n : Nat} (bv : BitVec n) :

Computes a hash of a bitvector, combining 64-bit words using mixHash.

Equations

We add simp-lemmas that rewrite bitvector operations into the equivalent notation

@[simp]
theorem BitVec.append_eq {w v : Nat} (x : BitVec w) (y : BitVec v) :
x.append y = x ++ y
@[simp]
theorem BitVec.shiftLeft_eq {w : Nat} (x : BitVec w) (n : Nat) :
x.shiftLeft n = x <<< n
@[simp]
theorem BitVec.ushiftRight_eq {w : Nat} (x : BitVec w) (n : Nat) :
x.ushiftRight n = x >>> n
@[simp]
theorem BitVec.not_eq {w : Nat} (x : BitVec w) :
x.not = ~~~x
@[simp]
theorem BitVec.and_eq {w : Nat} (x y : BitVec w) :
x.and y = x &&& y
@[simp]
theorem BitVec.or_eq {w : Nat} (x y : BitVec w) :
x.or y = x ||| y
@[simp]
theorem BitVec.xor_eq {w : Nat} (x y : BitVec w) :
x.xor y = x ^^^ y
@[simp]
theorem BitVec.neg_eq {w : Nat} (x : BitVec w) :
x.neg = -x
@[simp]
theorem BitVec.add_eq {w : Nat} (x y : BitVec w) :
x.add y = x + y
@[simp]
theorem BitVec.sub_eq {w : Nat} (x y : BitVec w) :
x.sub y = x - y
@[simp]
theorem BitVec.mul_eq {w : Nat} (x y : BitVec w) :
x.mul y = x * y
@[simp]
theorem BitVec.udiv_eq {w : Nat} (x y : BitVec w) :
x.udiv y = x / y
@[simp]
theorem BitVec.umod_eq {w : Nat} (x y : BitVec w) :
x.umod y = x % y
@[simp]
theorem BitVec.zero_eq {n : Nat} :

Converts a list of Bools into a big-endian BitVec.

Equations

Converts a list of Bools into a little-endian BitVec.

Equations

Overflow #

def BitVec.uaddOverflow {w : Nat} (x y : BitVec w) :

Checks whether addition of x and y results in unsigned overflow.

SMT-LIB name: bvuaddo.

Equations
def BitVec.saddOverflow {w : Nat} (x y : BitVec w) :

Checks whether addition of x and y results in signed overflow, treating x and y as 2's complement signed bitvectors.

SMT-LIB name: bvsaddo.

Equations
def BitVec.usubOverflow {w : Nat} (x y : BitVec w) :

Checks whether subtraction of x and y results in unsigned overflow.

SMT-Lib name: bvusubo.

Equations
def BitVec.ssubOverflow {w : Nat} (x y : BitVec w) :

Checks whether the subtraction of x and y results in signed overflow, treating x and y as 2's complement signed bitvectors.

SMT-Lib name: bvssubo.

Equations
def BitVec.negOverflow {w : Nat} (x : BitVec w) :

Checks whether the negation of a bitvector results in overflow.

For a bitvector x with nonzero width, this only happens if x = intMin.

SMT-Lib name: bvnego.

Equations
def BitVec.reverse {w : Nat} :
BitVec wBitVec w

Reverses the bits in a bitvector.

Equations