Preliminaries #
noncomputable def
Nat.div2Induction
{motive : Nat → Sort u}
(n : Nat)
(ind : (n : Nat) → (n > 0 → motive (n / 2)) → motive n)
:
motive n
An induction principle for the natural numbers with two cases:
n = 0
, and the motive is satisfied for0
n > 0
, and the motive should be satisfied forn
on the assumption that it is satisfied forn / 2
.
Equations
- Nat.div2Induction n ind = Nat.strongRecOn n fun (n : Nat) (hyp : (m : Nat) → m < n → motive m) => ind n fun (n_pos : n > 0) => if n_eq : n = 0 then ⋯.elim else hyp (n / 2) ⋯
testBit #
Depending on use cases either testBit_add_one
or testBit_div_two
may be more useful as a simp
lemma, so neither is a global simp
lemma.
eq_of_testBit_eq
allows proving two natural numbers are equal
if their bits are all equal.
bitwise #
bitwise #
and #
@[reducible, inline, deprecated Nat.and_two_pow_sub_one_eq_mod (since := "2025-03-18")]
@[reducible, inline, deprecated Nat.and_two_pow_sub_one_eq_mod (since := "2024-09-11")]
@[reducible, inline, deprecated Nat.and_two_pow_sub_one_of_lt_two_pow (since := "2025-03-18")]
@[reducible, inline, deprecated Nat.and_two_pow_sub_one_of_lt_two_pow (since := "2024-09-11")]
lor #
instance
Nat.instLawfulCommIdentityHOrOfNat :
Std.LawfulCommIdentity (fun (x1 x2 : Nat) => x1 ||| x2) 0
xor #
instance
Nat.instLawfulCommIdentityHXorOfNat :
Std.LawfulCommIdentity (fun (x1 x2 : Nat) => x1 ^^^ x2) 0
Arithmetic #
@[reducible, inline, deprecated Nat.testBit_two_pow_mul (since := "2025-03-18")]