@[irreducible]
def
Fin.hIterateFrom
(P : Nat → Sort u_1)
{n : Nat}
(f : (i : Fin n) → P ↑i → P (↑i + 1))
(i : Nat)
(ubnd : i ≤ n)
(a : P i)
:
P n
Applies an index-dependent function f
to all of the values in [i:n]
, starting at i
with an
initial accumulator a
.
Concretely, Fin.hIterateFrom P f i a
is equal to
a |> f i |> f (i + 1) |> ... |> f (n - 1)
Theorems about Fin.hIterateFrom
can be proven using the general theorem Fin.hIterateFrom_elim
or
other more specialized theorems.
Fin.hIterate
is a variant that always starts at 0
.
Equations
- Fin.hIterateFrom P f i ubnd a = if g : i < n then Fin.hIterateFrom P f (i + 1) g (f ⟨i, g⟩ a) else let_fun p := ⋯; cast ⋯ a
def
Fin.hIterate
(P : Nat → Sort u_1)
{n : Nat}
(init : P 0)
(f : (i : Fin n) → P ↑i → P (↑i + 1))
:
P n
Applies an index-dependent function to all the values less than the given bound n
, starting at
0
with an accumulator.
Concretely, Fin.hIterate P init f
is equal to
init |> f 0 |> f 1 |> ... |> f (n-1)
Theorems about Fin.hIterate
can be proven using the general theorem Fin.hIterate_elim
or other more
specialized theorems.
Fin.hIterateFrom
is a variant that takes a custom starting value instead of 0
.
Equations
- Fin.hIterate P init f = Fin.hIterateFrom P f 0 ⋯ init