Documentation

Init.Data.SInt.Bitwise

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]
@[simp]
theorem Int8.toBitVec_or (a b : Int8) :
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem UInt8.toInt8_and (a b : UInt8) :
@[simp]
@[simp]
@[simp]
@[simp]
theorem USize.toISize_and (a b : USize) :
@[simp]
theorem UInt8.toInt8_or (a b : UInt8) :
@[simp]
theorem UInt16.toInt16_or (a b : UInt16) :
@[simp]
theorem UInt32.toInt32_or (a b : UInt32) :
@[simp]
theorem UInt64.toInt64_or (a b : UInt64) :
@[simp]
theorem USize.toISize_or (a b : USize) :
@[simp]
theorem UInt8.toInt8_xor (a b : UInt8) :
@[simp]
@[simp]
@[simp]
@[simp]
theorem USize.toISize_xor (a b : USize) :
@[simp]
@[simp]
@[simp]
theorem Int8.toUInt8_and (a b : Int8) :
@[simp]
@[simp]
@[simp]
@[simp]
theorem ISize.toUSize_and (a b : ISize) :
@[simp]
theorem Int8.toUInt8_or (a b : Int8) :
@[simp]
@[simp]
@[simp]
@[simp]
theorem ISize.toUSize_or (a b : ISize) :
@[simp]
theorem Int8.toUInt8_xor (a b : Int8) :
@[simp]
@[simp]
@[simp]
@[simp]
theorem ISize.toUSize_xor (a b : ISize) :
@[simp]
@[simp]
@[simp]
theorem Int8.toInt16_and (a b : Int8) :
@[simp]
theorem Int8.toInt32_and (a b : Int8) :
@[simp]
theorem Int8.toInt64_and (a b : Int8) :
@[simp]
theorem Int8.toISize_and (a b : Int8) :
@[simp]
theorem Int16.toInt8_and (a b : Int16) :
@[simp]
theorem Int16.toInt32_and (a b : Int16) :
@[simp]
theorem Int16.toInt64_and (a b : Int16) :
@[simp]
theorem Int16.toISize_and (a b : Int16) :
@[simp]
theorem Int32.toInt8_and (a b : Int32) :
@[simp]
theorem Int32.toInt16_and (a b : Int32) :
@[simp]
theorem Int32.toInt64_and (a b : Int32) :
@[simp]
theorem Int32.toISize_and (a b : Int32) :
@[simp]
theorem ISize.toInt8_and (a b : ISize) :
@[simp]
theorem ISize.toInt16_and (a b : ISize) :
@[simp]
theorem ISize.toInt32_and (a b : ISize) :
@[simp]
theorem ISize.toInt64_and (a b : ISize) :
@[simp]
theorem Int64.toInt8_and (a b : Int64) :
@[simp]
theorem Int64.toInt16_and (a b : Int64) :
@[simp]
theorem Int64.toInt32_and (a b : Int64) :
@[simp]
theorem Int64.toISize_and (a b : Int64) :
@[simp]
theorem Int8.toInt16_or (a b : Int8) :
@[simp]
theorem Int8.toInt32_or (a b : Int8) :
@[simp]
theorem Int8.toInt64_or (a b : Int8) :
@[simp]
theorem Int8.toISize_or (a b : Int8) :
@[simp]
theorem Int16.toInt8_or (a b : Int16) :
@[simp]
theorem Int16.toInt32_or (a b : Int16) :
@[simp]
theorem Int16.toInt64_or (a b : Int16) :
@[simp]
theorem Int16.toISize_or (a b : Int16) :
@[simp]
theorem Int32.toInt8_or (a b : Int32) :
@[simp]
theorem Int32.toInt16_or (a b : Int32) :
@[simp]
theorem Int32.toInt64_or (a b : Int32) :
@[simp]
theorem Int32.toISize_or (a b : Int32) :
@[simp]
theorem ISize.toInt8_or (a b : ISize) :
@[simp]
theorem ISize.toInt16_or (a b : ISize) :
@[simp]
theorem ISize.toInt32_or (a b : ISize) :
@[simp]
theorem ISize.toInt64_or (a b : ISize) :
@[simp]
theorem Int64.toInt8_or (a b : Int64) :
@[simp]
theorem Int64.toInt16_or (a b : Int64) :
@[simp]
theorem Int64.toInt32_or (a b : Int64) :
@[simp]
theorem Int64.toISize_or (a b : Int64) :
@[simp]
theorem Int8.toInt16_xor (a b : Int8) :
@[simp]
theorem Int8.toInt32_xor (a b : Int8) :
@[simp]
theorem Int8.toInt64_xor (a b : Int8) :
@[simp]
theorem Int8.toISize_xor (a b : Int8) :
@[simp]
theorem Int16.toInt8_xor (a b : Int16) :
@[simp]
theorem Int16.toInt32_xor (a b : Int16) :
@[simp]
theorem Int16.toInt64_xor (a b : Int16) :
@[simp]
theorem Int16.toISize_xor (a b : Int16) :
@[simp]
theorem Int32.toInt8_xor (a b : Int32) :
@[simp]
theorem Int32.toInt16_xor (a b : Int32) :
@[simp]
theorem Int32.toInt64_xor (a b : Int32) :
@[simp]
theorem Int32.toISize_xor (a b : Int32) :
@[simp]
theorem ISize.toInt8_xor (a b : ISize) :
@[simp]
theorem ISize.toInt16_xor (a b : ISize) :
@[simp]
theorem ISize.toInt32_xor (a b : ISize) :
@[simp]
theorem ISize.toInt64_xor (a b : ISize) :
@[simp]
theorem Int64.toInt8_xor (a b : Int64) :
@[simp]
theorem Int64.toInt16_xor (a b : Int64) :
@[simp]
theorem Int64.toInt32_xor (a b : Int64) :
@[simp]
theorem Int64.toISize_xor (a b : Int64) :
theorem Int8.not_eq_neg_add (a : Int8) :
~~~a = -a - 1
@[simp]
theorem Int8.toInt_not (a : Int8) :
(~~~a).toInt = (-a.toInt - 1).bmod (2 ^ 8)
@[simp]
theorem Int16.toInt_not (a : Int16) :
(~~~a).toInt = (-a.toInt - 1).bmod (2 ^ 16)
@[simp]
theorem Int32.toInt_not (a : Int32) :
(~~~a).toInt = (-a.toInt - 1).bmod (2 ^ 32)
@[simp]
theorem Int64.toInt_not (a : Int64) :
(~~~a).toInt = (-a.toInt - 1).bmod (2 ^ 64)
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem Int8.ofBitVec_and (a b : BitVec 8) :
@[simp]
theorem Int16.ofBitVec_and (a b : BitVec 16) :
@[simp]
theorem Int32.ofBitVec_and (a b : BitVec 32) :
@[simp]
theorem Int64.ofBitVec_and (a b : BitVec 64) :
@[simp]
theorem Int8.ofBitVec_or (a b : BitVec 8) :
@[simp]
theorem Int16.ofBitVec_or (a b : BitVec 16) :
@[simp]
theorem Int32.ofBitVec_or (a b : BitVec 32) :
@[simp]
theorem Int64.ofBitVec_or (a b : BitVec 64) :
@[simp]
theorem Int8.ofBitVec_xor (a b : BitVec 8) :
@[simp]
theorem Int16.ofBitVec_xor (a b : BitVec 16) :
@[simp]
theorem Int32.ofBitVec_xor (a b : BitVec 32) :
@[simp]
theorem Int64.ofBitVec_xor (a b : BitVec 64) :
@[simp]
@[simp]
@[simp]
@[simp]
theorem Int8.neg_eq_not_add (a : Int8) :
-a = ~~~a + 1
theorem Int8.not_eq_neg_sub (a : Int8) :
~~~a = -a - 1
theorem Int8.or_assoc (a b c : Int8) :
a ||| b ||| c = a ||| (b ||| c)
theorem Int16.or_assoc (a b c : Int16) :
a ||| b ||| c = a ||| (b ||| c)
theorem Int32.or_assoc (a b c : Int32) :
a ||| b ||| c = a ||| (b ||| c)
theorem Int64.or_assoc (a b c : Int64) :
a ||| b ||| c = a ||| (b ||| c)
theorem ISize.or_assoc (a b c : ISize) :
a ||| b ||| c = a ||| (b ||| c)
instance instAssociativeInt8HOr :
Std.Associative fun (x1 x2 : Int8) => x1 ||| x2
instance instAssociativeInt16HOr :
Std.Associative fun (x1 x2 : Int16) => x1 ||| x2
instance instAssociativeInt32HOr :
Std.Associative fun (x1 x2 : Int32) => x1 ||| x2
instance instAssociativeInt64HOr :
Std.Associative fun (x1 x2 : Int64) => x1 ||| x2
instance instAssociativeISizeHOr :
Std.Associative fun (x1 x2 : ISize) => x1 ||| x2
theorem Int8.or_comm (a b : Int8) :
a ||| b = b ||| a
theorem Int16.or_comm (a b : Int16) :
a ||| b = b ||| a
theorem Int32.or_comm (a b : Int32) :
a ||| b = b ||| a
theorem Int64.or_comm (a b : Int64) :
a ||| b = b ||| a
theorem ISize.or_comm (a b : ISize) :
a ||| b = b ||| a
instance instCommutativeInt8HOr :
Std.Commutative fun (x1 x2 : Int8) => x1 ||| x2
instance instCommutativeInt16HOr :
Std.Commutative fun (x1 x2 : Int16) => x1 ||| x2
instance instCommutativeInt32HOr :
Std.Commutative fun (x1 x2 : Int32) => x1 ||| x2
instance instCommutativeInt64HOr :
Std.Commutative fun (x1 x2 : Int64) => x1 ||| x2
instance instCommutativeISizeHOr :
Std.Commutative fun (x1 x2 : ISize) => x1 ||| x2
@[simp]
theorem Int8.or_self {a : Int8} :
a ||| a = a
@[simp]
theorem Int16.or_self {a : Int16} :
a ||| a = a
@[simp]
theorem Int32.or_self {a : Int32} :
a ||| a = a
@[simp]
theorem Int64.or_self {a : Int64} :
a ||| a = a
@[simp]
theorem ISize.or_self {a : ISize} :
a ||| a = a
instance instIdempotentOpInt8HOr :
Std.IdempotentOp fun (x1 x2 : Int8) => x1 ||| x2
instance instIdempotentOpInt16HOr :
Std.IdempotentOp fun (x1 x2 : Int16) => x1 ||| x2
instance instIdempotentOpInt32HOr :
Std.IdempotentOp fun (x1 x2 : Int32) => x1 ||| x2
instance instIdempotentOpInt64HOr :
Std.IdempotentOp fun (x1 x2 : Int64) => x1 ||| x2
instance instIdempotentOpISizeHOr :
Std.IdempotentOp fun (x1 x2 : ISize) => x1 ||| x2
@[simp]
theorem Int8.or_zero {a : Int8} :
a ||| 0 = a
@[simp]
theorem Int16.or_zero {a : Int16} :
a ||| 0 = a
@[simp]
theorem Int32.or_zero {a : Int32} :
a ||| 0 = a
@[simp]
theorem Int64.or_zero {a : Int64} :
a ||| 0 = a
@[simp]
theorem ISize.or_zero {a : ISize} :
a ||| 0 = a
@[simp]
theorem Int8.zero_or {a : Int8} :
0 ||| a = a
@[simp]
theorem Int16.zero_or {a : Int16} :
0 ||| a = a
@[simp]
theorem Int32.zero_or {a : Int32} :
0 ||| a = a
@[simp]
theorem Int64.zero_or {a : Int64} :
0 ||| a = a
@[simp]
theorem ISize.zero_or {a : ISize} :
0 ||| a = a
@[simp]
theorem Int8.neg_one_or {a : Int8} :
-1 ||| a = -1
@[simp]
theorem Int16.neg_one_or {a : Int16} :
-1 ||| a = -1
@[simp]
theorem Int32.neg_one_or {a : Int32} :
-1 ||| a = -1
@[simp]
theorem Int64.neg_one_or {a : Int64} :
-1 ||| a = -1
@[simp]
theorem ISize.neg_one_or {a : ISize} :
-1 ||| a = -1
@[simp]
theorem Int8.or_neg_one {a : Int8} :
a ||| -1 = -1
@[simp]
theorem Int16.or_neg_one {a : Int16} :
a ||| -1 = -1
@[simp]
theorem Int32.or_neg_one {a : Int32} :
a ||| -1 = -1
@[simp]
theorem Int64.or_neg_one {a : Int64} :
a ||| -1 = -1
@[simp]
theorem ISize.or_neg_one {a : ISize} :
a ||| -1 = -1
@[simp]
theorem Int8.or_eq_zero_iff {a b : Int8} :
a ||| b = 0 ↔ a = 0 ∧ b = 0
@[simp]
theorem Int16.or_eq_zero_iff {a b : Int16} :
a ||| b = 0 ↔ a = 0 ∧ b = 0
@[simp]
theorem Int32.or_eq_zero_iff {a b : Int32} :
a ||| b = 0 ↔ a = 0 ∧ b = 0
@[simp]
theorem Int64.or_eq_zero_iff {a b : Int64} :
a ||| b = 0 ↔ a = 0 ∧ b = 0
@[simp]
theorem ISize.or_eq_zero_iff {a b : ISize} :
a ||| b = 0 ↔ a = 0 ∧ b = 0
theorem Int8.and_assoc (a b c : Int8) :
a &&& b &&& c = a &&& (b &&& c)
theorem Int16.and_assoc (a b c : Int16) :
a &&& b &&& c = a &&& (b &&& c)
theorem Int32.and_assoc (a b c : Int32) :
a &&& b &&& c = a &&& (b &&& c)
theorem Int64.and_assoc (a b c : Int64) :
a &&& b &&& c = a &&& (b &&& c)
theorem ISize.and_assoc (a b c : ISize) :
a &&& b &&& c = a &&& (b &&& c)
instance instAssociativeInt8HAnd :
Std.Associative fun (x1 x2 : Int8) => x1 &&& x2
instance instAssociativeInt16HAnd :
Std.Associative fun (x1 x2 : Int16) => x1 &&& x2
instance instAssociativeInt32HAnd :
Std.Associative fun (x1 x2 : Int32) => x1 &&& x2
instance instAssociativeInt64HAnd :
Std.Associative fun (x1 x2 : Int64) => x1 &&& x2
instance instAssociativeISizeHAnd :
Std.Associative fun (x1 x2 : ISize) => x1 &&& x2
theorem Int8.and_comm (a b : Int8) :
a &&& b = b &&& a
theorem Int16.and_comm (a b : Int16) :
a &&& b = b &&& a
theorem Int32.and_comm (a b : Int32) :
a &&& b = b &&& a
theorem Int64.and_comm (a b : Int64) :
a &&& b = b &&& a
theorem ISize.and_comm (a b : ISize) :
a &&& b = b &&& a
instance instCommutativeInt8HAnd :
Std.Commutative fun (x1 x2 : Int8) => x1 &&& x2
instance instCommutativeInt16HAnd :
Std.Commutative fun (x1 x2 : Int16) => x1 &&& x2
instance instCommutativeInt32HAnd :
Std.Commutative fun (x1 x2 : Int32) => x1 &&& x2
instance instCommutativeInt64HAnd :
Std.Commutative fun (x1 x2 : Int64) => x1 &&& x2
instance instCommutativeISizeHAnd :
Std.Commutative fun (x1 x2 : ISize) => x1 &&& x2
@[simp]
theorem Int8.and_self {a : Int8} :
a &&& a = a
@[simp]
theorem Int16.and_self {a : Int16} :
a &&& a = a
@[simp]
theorem Int32.and_self {a : Int32} :
a &&& a = a
@[simp]
theorem Int64.and_self {a : Int64} :
a &&& a = a
@[simp]
theorem ISize.and_self {a : ISize} :
a &&& a = a
instance instIdempotentOpInt8HAnd :
Std.IdempotentOp fun (x1 x2 : Int8) => x1 &&& x2
@[simp]
theorem Int8.and_zero {a : Int8} :
a &&& 0 = 0
@[simp]
theorem Int16.and_zero {a : Int16} :
a &&& 0 = 0
@[simp]
theorem Int32.and_zero {a : Int32} :
a &&& 0 = 0
@[simp]
theorem Int64.and_zero {a : Int64} :
a &&& 0 = 0
@[simp]
theorem ISize.and_zero {a : ISize} :
a &&& 0 = 0
@[simp]
theorem Int8.zero_and {a : Int8} :
0 &&& a = 0
@[simp]
theorem Int16.zero_and {a : Int16} :
0 &&& a = 0
@[simp]
theorem Int32.zero_and {a : Int32} :
0 &&& a = 0
@[simp]
theorem Int64.zero_and {a : Int64} :
0 &&& a = 0
@[simp]
theorem ISize.zero_and {a : ISize} :
0 &&& a = 0
@[simp]
theorem Int8.neg_one_and {a : Int8} :
-1 &&& a = a
@[simp]
theorem Int16.neg_one_and {a : Int16} :
-1 &&& a = a
@[simp]
theorem Int32.neg_one_and {a : Int32} :
-1 &&& a = a
@[simp]
theorem Int64.neg_one_and {a : Int64} :
-1 &&& a = a
@[simp]
theorem ISize.neg_one_and {a : ISize} :
-1 &&& a = a
@[simp]
theorem Int8.and_neg_one {a : Int8} :
a &&& -1 = a
@[simp]
theorem Int16.and_neg_one {a : Int16} :
a &&& -1 = a
@[simp]
theorem Int32.and_neg_one {a : Int32} :
a &&& -1 = a
@[simp]
theorem Int64.and_neg_one {a : Int64} :
a &&& -1 = a
@[simp]
theorem ISize.and_neg_one {a : ISize} :
a &&& -1 = a
@[simp]
theorem Int8.and_eq_neg_one_iff {a b : Int8} :
a &&& b = -1 ↔ a = -1 ∧ b = -1
@[simp]
theorem Int16.and_eq_neg_one_iff {a b : Int16} :
a &&& b = -1 ↔ a = -1 ∧ b = -1
@[simp]
theorem Int32.and_eq_neg_one_iff {a b : Int32} :
a &&& b = -1 ↔ a = -1 ∧ b = -1
@[simp]
theorem Int64.and_eq_neg_one_iff {a b : Int64} :
a &&& b = -1 ↔ a = -1 ∧ b = -1
@[simp]
theorem ISize.and_eq_neg_one_iff {a b : ISize} :
a &&& b = -1 ↔ a = -1 ∧ b = -1
theorem Int8.xor_assoc (a b c : Int8) :
a ^^^ b ^^^ c = a ^^^ (b ^^^ c)
theorem Int16.xor_assoc (a b c : Int16) :
a ^^^ b ^^^ c = a ^^^ (b ^^^ c)
theorem Int32.xor_assoc (a b c : Int32) :
a ^^^ b ^^^ c = a ^^^ (b ^^^ c)
theorem Int64.xor_assoc (a b c : Int64) :
a ^^^ b ^^^ c = a ^^^ (b ^^^ c)
theorem ISize.xor_assoc (a b c : ISize) :
a ^^^ b ^^^ c = a ^^^ (b ^^^ c)
instance instAssociativeInt8HXor :
Std.Associative fun (x1 x2 : Int8) => x1 ^^^ x2
instance instAssociativeInt16HXor :
Std.Associative fun (x1 x2 : Int16) => x1 ^^^ x2
instance instAssociativeInt32HXor :
Std.Associative fun (x1 x2 : Int32) => x1 ^^^ x2
instance instAssociativeInt64HXor :
Std.Associative fun (x1 x2 : Int64) => x1 ^^^ x2
instance instAssociativeISizeHXor :
Std.Associative fun (x1 x2 : ISize) => x1 ^^^ x2
theorem Int8.xor_comm (a b : Int8) :
a ^^^ b = b ^^^ a
theorem Int16.xor_comm (a b : Int16) :
a ^^^ b = b ^^^ a
theorem Int32.xor_comm (a b : Int32) :
a ^^^ b = b ^^^ a
theorem Int64.xor_comm (a b : Int64) :
a ^^^ b = b ^^^ a
theorem ISize.xor_comm (a b : ISize) :
a ^^^ b = b ^^^ a
instance instCommutativeInt8HXor :
Std.Commutative fun (x1 x2 : Int8) => x1 ^^^ x2
instance instCommutativeInt16HXor :
Std.Commutative fun (x1 x2 : Int16) => x1 ^^^ x2
instance instCommutativeInt32HXor :
Std.Commutative fun (x1 x2 : Int32) => x1 ^^^ x2
instance instCommutativeInt64HXor :
Std.Commutative fun (x1 x2 : Int64) => x1 ^^^ x2
instance instCommutativeISizeHXor :
Std.Commutative fun (x1 x2 : ISize) => x1 ^^^ x2
@[simp]
theorem Int8.xor_self {a : Int8} :
a ^^^ a = 0
@[simp]
theorem Int16.xor_self {a : Int16} :
a ^^^ a = 0
@[simp]
theorem Int32.xor_self {a : Int32} :
a ^^^ a = 0
@[simp]
theorem Int64.xor_self {a : Int64} :
a ^^^ a = 0
@[simp]
theorem ISize.xor_self {a : ISize} :
a ^^^ a = 0
@[simp]
theorem Int8.xor_zero {a : Int8} :
a ^^^ 0 = a
@[simp]
theorem Int16.xor_zero {a : Int16} :
a ^^^ 0 = a
@[simp]
theorem Int32.xor_zero {a : Int32} :
a ^^^ 0 = a
@[simp]
theorem Int64.xor_zero {a : Int64} :
a ^^^ 0 = a
@[simp]
theorem ISize.xor_zero {a : ISize} :
a ^^^ 0 = a
@[simp]
theorem Int8.zero_xor {a : Int8} :
0 ^^^ a = a
@[simp]
theorem Int16.zero_xor {a : Int16} :
0 ^^^ a = a
@[simp]
theorem Int32.zero_xor {a : Int32} :
0 ^^^ a = a
@[simp]
theorem Int64.zero_xor {a : Int64} :
0 ^^^ a = a
@[simp]
theorem ISize.zero_xor {a : ISize} :
0 ^^^ a = a
@[simp]
theorem Int8.neg_one_xor {a : Int8} :
-1 ^^^ a = ~~~a
@[simp]
theorem Int16.neg_one_xor {a : Int16} :
-1 ^^^ a = ~~~a
@[simp]
theorem Int32.neg_one_xor {a : Int32} :
-1 ^^^ a = ~~~a
@[simp]
theorem Int64.neg_one_xor {a : Int64} :
-1 ^^^ a = ~~~a
@[simp]
theorem ISize.neg_one_xor {a : ISize} :
-1 ^^^ a = ~~~a
@[simp]
theorem Int8.xor_neg_one {a : Int8} :
a ^^^ -1 = ~~~a
@[simp]
theorem Int16.xor_neg_one {a : Int16} :
a ^^^ -1 = ~~~a
@[simp]
theorem Int32.xor_neg_one {a : Int32} :
a ^^^ -1 = ~~~a
@[simp]
theorem Int64.xor_neg_one {a : Int64} :
a ^^^ -1 = ~~~a
@[simp]
theorem ISize.xor_neg_one {a : ISize} :
a ^^^ -1 = ~~~a
@[simp]
theorem Int8.xor_eq_zero_iff {a b : Int8} :
a ^^^ b = 0 ↔ a = b
@[simp]
theorem Int16.xor_eq_zero_iff {a b : Int16} :
a ^^^ b = 0 ↔ a = b
@[simp]
theorem Int32.xor_eq_zero_iff {a b : Int32} :
a ^^^ b = 0 ↔ a = b
@[simp]
theorem Int64.xor_eq_zero_iff {a b : Int64} :
a ^^^ b = 0 ↔ a = b
@[simp]
theorem ISize.xor_eq_zero_iff {a b : ISize} :
a ^^^ b = 0 ↔ a = b
@[simp]
theorem Int8.xor_left_inj {a b : Int8} (c : Int8) :
a ^^^ c = b ^^^ c ↔ a = b
@[simp]
theorem Int16.xor_left_inj {a b : Int16} (c : Int16) :
a ^^^ c = b ^^^ c ↔ a = b
@[simp]
theorem Int32.xor_left_inj {a b : Int32} (c : Int32) :
a ^^^ c = b ^^^ c ↔ a = b
@[simp]
theorem Int64.xor_left_inj {a b : Int64} (c : Int64) :
a ^^^ c = b ^^^ c ↔ a = b
@[simp]
theorem ISize.xor_left_inj {a b : ISize} (c : ISize) :
a ^^^ c = b ^^^ c ↔ a = b
@[simp]
theorem Int8.xor_right_inj {a b : Int8} (c : Int8) :
c ^^^ a = c ^^^ b ↔ a = b
@[simp]
theorem Int16.xor_right_inj {a b : Int16} (c : Int16) :
c ^^^ a = c ^^^ b ↔ a = b
@[simp]
theorem Int32.xor_right_inj {a b : Int32} (c : Int32) :
c ^^^ a = c ^^^ b ↔ a = b
@[simp]
theorem Int64.xor_right_inj {a b : Int64} (c : Int64) :
c ^^^ a = c ^^^ b ↔ a = b
@[simp]
theorem ISize.xor_right_inj {a b : ISize} (c : ISize) :
c ^^^ a = c ^^^ b ↔ a = b
@[simp]
theorem Int8.not_zero :
~~~0 = -1
@[simp]
theorem Int16.not_zero :
~~~0 = -1
@[simp]
theorem Int32.not_zero :
~~~0 = -1
@[simp]
theorem Int64.not_zero :
~~~0 = -1
@[simp]
theorem ISize.not_zero :
~~~0 = -1
@[simp]
theorem Int8.not_neg_one :
~~~(-1) = 0
@[simp]
theorem Int16.not_neg_one :
~~~(-1) = 0
@[simp]
theorem Int32.not_neg_one :
~~~(-1) = 0
@[simp]
theorem Int64.not_neg_one :
~~~(-1) = 0
@[simp]
theorem ISize.not_neg_one :
~~~(-1) = 0
@[simp]
theorem Int8.not_not {a : Int8} :
@[simp]
theorem Int16.not_not {a : Int16} :
@[simp]
theorem Int32.not_not {a : Int32} :
@[simp]
theorem Int64.not_not {a : Int64} :
@[simp]
theorem ISize.not_not {a : ISize} :
@[simp]
theorem Int8.not_inj {a b : Int8} :
@[simp]
theorem Int16.not_inj {a b : Int16} :
@[simp]
theorem Int32.not_inj {a b : Int32} :
@[simp]
theorem Int64.not_inj {a b : Int64} :
@[simp]
theorem ISize.not_inj {a b : ISize} :
@[simp]
theorem Int8.and_not_self {a : Int8} :
a &&& ~~~a = 0
@[simp]
theorem Int16.and_not_self {a : Int16} :
a &&& ~~~a = 0
@[simp]
theorem Int32.and_not_self {a : Int32} :
a &&& ~~~a = 0
@[simp]
theorem Int64.and_not_self {a : Int64} :
a &&& ~~~a = 0
@[simp]
theorem ISize.and_not_self {a : ISize} :
a &&& ~~~a = 0
@[simp]
theorem Int8.not_and_self {a : Int8} :
~~~a &&& a = 0
@[simp]
theorem Int16.not_and_self {a : Int16} :
~~~a &&& a = 0
@[simp]
theorem Int32.not_and_self {a : Int32} :
~~~a &&& a = 0
@[simp]
theorem Int64.not_and_self {a : Int64} :
~~~a &&& a = 0
@[simp]
theorem ISize.not_and_self {a : ISize} :
~~~a &&& a = 0
@[simp]
theorem Int8.or_not_self {a : Int8} :
a ||| ~~~a = -1
@[simp]
theorem Int16.or_not_self {a : Int16} :
a ||| ~~~a = -1
@[simp]
theorem Int32.or_not_self {a : Int32} :
a ||| ~~~a = -1
@[simp]
theorem Int64.or_not_self {a : Int64} :
a ||| ~~~a = -1
@[simp]
theorem ISize.or_not_self {a : ISize} :
a ||| ~~~a = -1
@[simp]
theorem Int8.not_or_self {a : Int8} :
~~~a ||| a = -1
@[simp]
theorem Int16.not_or_self {a : Int16} :
~~~a ||| a = -1
@[simp]
theorem Int32.not_or_self {a : Int32} :
~~~a ||| a = -1
@[simp]
theorem Int64.not_or_self {a : Int64} :
~~~a ||| a = -1
@[simp]
theorem ISize.not_or_self {a : ISize} :
~~~a ||| a = -1
theorem Int8.not_eq_comm {a b : Int8} :
@[simp]
theorem Int8.ne_not_self {a : Int8} :
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem Int8.not_ne_self {a : Int8} :
@[simp]
@[simp]
@[simp]
@[simp]
theorem Int8.not_xor {a b : Int8} :
~~~a ^^^ b = ~~~(a ^^^ b)
theorem Int16.not_xor {a b : Int16} :
~~~a ^^^ b = ~~~(a ^^^ b)
theorem Int32.not_xor {a b : Int32} :
~~~a ^^^ b = ~~~(a ^^^ b)
theorem Int64.not_xor {a b : Int64} :
~~~a ^^^ b = ~~~(a ^^^ b)
theorem ISize.not_xor {a b : ISize} :
~~~a ^^^ b = ~~~(a ^^^ b)
theorem Int8.xor_not {a b : Int8} :
a ^^^ ~~~b = ~~~(a ^^^ b)
theorem Int16.xor_not {a b : Int16} :
a ^^^ ~~~b = ~~~(a ^^^ b)
theorem Int32.xor_not {a b : Int32} :
a ^^^ ~~~b = ~~~(a ^^^ b)
theorem Int64.xor_not {a b : Int64} :
a ^^^ ~~~b = ~~~(a ^^^ b)
theorem ISize.xor_not {a b : ISize} :
a ^^^ ~~~b = ~~~(a ^^^ b)
@[simp]
theorem Int8.shiftLeft_zero {a : Int8} :
a <<< 0 = a
@[simp]
theorem Int16.shiftLeft_zero {a : Int16} :
a <<< 0 = a
@[simp]
theorem Int32.shiftLeft_zero {a : Int32} :
a <<< 0 = a
@[simp]
theorem Int64.shiftLeft_zero {a : Int64} :
a <<< 0 = a
@[simp]
theorem ISize.shiftLeft_zero {a : ISize} :
a <<< 0 = a
@[simp]
theorem Int8.zero_shiftLeft {a : Int8} :
0 <<< a = 0
@[simp]
theorem Int16.zero_shiftLeft {a : Int16} :
0 <<< a = 0
@[simp]
theorem Int32.zero_shiftLeft {a : Int32} :
0 <<< a = 0
@[simp]
theorem Int64.zero_shiftLeft {a : Int64} :
0 <<< a = 0
@[simp]
theorem ISize.zero_shiftLeft {a : ISize} :
0 <<< a = 0
theorem Int8.shiftLeft_xor {a b c : Int8} :
(a ^^^ b) <<< c = a <<< c ^^^ b <<< c
theorem Int16.shiftLeft_xor {a b c : Int16} :
(a ^^^ b) <<< c = a <<< c ^^^ b <<< c
theorem Int32.shiftLeft_xor {a b c : Int32} :
(a ^^^ b) <<< c = a <<< c ^^^ b <<< c
theorem Int64.shiftLeft_xor {a b c : Int64} :
(a ^^^ b) <<< c = a <<< c ^^^ b <<< c
theorem ISize.shiftLeft_xor {a b c : ISize} :
(a ^^^ b) <<< c = a <<< c ^^^ b <<< c
theorem Int8.shiftLeft_and {a b c : Int8} :
(a &&& b) <<< c = a <<< c &&& b <<< c
theorem Int16.shiftLeft_and {a b c : Int16} :
(a &&& b) <<< c = a <<< c &&& b <<< c
theorem Int32.shiftLeft_and {a b c : Int32} :
(a &&& b) <<< c = a <<< c &&& b <<< c
theorem Int64.shiftLeft_and {a b c : Int64} :
(a &&& b) <<< c = a <<< c &&& b <<< c
theorem ISize.shiftLeft_and {a b c : ISize} :
(a &&& b) <<< c = a <<< c &&& b <<< c
theorem Int8.shiftLeft_or {a b c : Int8} :
(a ||| b) <<< c = a <<< c ||| b <<< c
theorem Int16.shiftLeft_or {a b c : Int16} :
(a ||| b) <<< c = a <<< c ||| b <<< c
theorem Int32.shiftLeft_or {a b c : Int32} :
(a ||| b) <<< c = a <<< c ||| b <<< c
theorem Int64.shiftLeft_or {a b c : Int64} :
(a ||| b) <<< c = a <<< c ||| b <<< c
theorem ISize.shiftLeft_or {a b c : ISize} :
(a ||| b) <<< c = a <<< c ||| b <<< c
@[simp]
theorem Int8.neg_one_shiftLeft_and_shiftLeft {a b : Int8} :
(-1) <<< b &&& a <<< b = a <<< b
@[simp]
theorem Int16.neg_one_shiftLeft_and_shiftLeft {a b : Int16} :
(-1) <<< b &&& a <<< b = a <<< b
@[simp]
theorem Int32.neg_one_shiftLeft_and_shiftLeft {a b : Int32} :
(-1) <<< b &&& a <<< b = a <<< b
@[simp]
theorem Int64.neg_one_shiftLeft_and_shiftLeft {a b : Int64} :
(-1) <<< b &&& a <<< b = a <<< b
@[simp]
theorem ISize.neg_one_shiftLeft_and_shiftLeft {a b : ISize} :
(-1) <<< b &&& a <<< b = a <<< b
@[simp]
theorem Int8.neg_one_shiftLeft_or_shiftLeft {a b : Int8} :
(-1) <<< b ||| a <<< b = (-1) <<< b
@[simp]
theorem Int16.neg_one_shiftLeft_or_shiftLeft {a b : Int16} :
(-1) <<< b ||| a <<< b = (-1) <<< b
@[simp]
theorem Int32.neg_one_shiftLeft_or_shiftLeft {a b : Int32} :
(-1) <<< b ||| a <<< b = (-1) <<< b
@[simp]
theorem Int64.neg_one_shiftLeft_or_shiftLeft {a b : Int8} :
(-1) <<< b ||| a <<< b = (-1) <<< b
@[simp]
theorem ISize.neg_one_shiftLeft_or_shiftLeft {a b : ISize} :
(-1) <<< b ||| a <<< b = (-1) <<< b
@[simp]
theorem Int8.shiftRight_zero {a : Int8} :
a >>> 0 = a
@[simp]
theorem Int16.shiftRight_zero {a : Int16} :
a >>> 0 = a
@[simp]
theorem Int32.shiftRight_zero {a : Int32} :
a >>> 0 = a
@[simp]
theorem Int64.shiftRight_zero {a : Int64} :
a >>> 0 = a
@[simp]
theorem ISize.shiftRight_zero {a : ISize} :
a >>> 0 = a
@[simp]
theorem Int8.zero_shiftRight {a : Int8} :
0 >>> a = 0
@[simp]
theorem Int16.zero_shiftRight {a : Int16} :
0 >>> a = 0
@[simp]
theorem Int32.zero_shiftRight {a : Int32} :
0 >>> a = 0
@[simp]
theorem Int64.zero_shiftRight {a : Int64} :
0 >>> a = 0
@[simp]
theorem ISize.zero_shiftRight {a : ISize} :
0 >>> a = 0
theorem Int8.shiftRight_xor {a b c : Int8} :
(a ^^^ b) >>> c = a >>> c ^^^ b >>> c
theorem Int16.shiftRight_xor {a b c : Int16} :
(a ^^^ b) >>> c = a >>> c ^^^ b >>> c
theorem Int32.shiftRight_xor {a b c : Int32} :
(a ^^^ b) >>> c = a >>> c ^^^ b >>> c
theorem Int64.shiftRight_xor {a b c : Int64} :
(a ^^^ b) >>> c = a >>> c ^^^ b >>> c
theorem ISize.shiftRight_xor {a b c : ISize} :
(a ^^^ b) >>> c = a >>> c ^^^ b >>> c
theorem Int8.shiftRight_and {a b c : Int8} :
(a &&& b) >>> c = a >>> c &&& b >>> c
theorem Int16.shiftRight_and {a b c : Int16} :
(a &&& b) >>> c = a >>> c &&& b >>> c
theorem Int32.shiftRight_and {a b c : Int32} :
(a &&& b) >>> c = a >>> c &&& b >>> c
theorem Int64.shiftRight_and {a b c : Int64} :
(a &&& b) >>> c = a >>> c &&& b >>> c
theorem ISize.shiftRight_and {a b c : ISize} :
(a &&& b) >>> c = a >>> c &&& b >>> c
theorem Int8.shiftRight_or {a b c : Int8} :
(a ||| b) >>> c = a >>> c ||| b >>> c
theorem Int16.shiftRight_or {a b c : Int16} :
(a ||| b) >>> c = a >>> c ||| b >>> c
theorem Int32.shiftRight_or {a b c : Int32} :
(a ||| b) >>> c = a >>> c ||| b >>> c
theorem Int64.shiftRight_or {a b c : Int64} :
(a ||| b) >>> c = a >>> c ||| b >>> c
theorem ISize.shiftRight_or {a b c : ISize} :
(a ||| b) >>> c = a >>> c ||| b >>> c