Documentation

Init.Omega.LinearCombo

Linear combinations #

We use this data structure while processing hypotheses.

Equations
  • One or more equations did not get rendered due to their size.
theorem Lean.Omega.LinearCombo.ext {a b : LinearCombo} (w₁ : a.const = b.const) (w₂ : a.coeffs = b.coeffs) :
a = b

Check if a linear combination is an atom, i.e. the constant term is zero and there is exactly one nonzero coefficient, which is one.

Equations

Evaluate a linear combination ⟨r, [c_1, …, c_k]⟩ at values [v_1, …, v_k] to obtain r + (c_1 * x_1 + (c_2 * x_2 + ... (c_k * x_k + 0)))).

Equations

The i-th coordinate function.

Equations
theorem Lean.Omega.LinearCombo.coordinate_eval_2 {a0 a1 a2 : Int} {t : List Int} :
(coordinate 2).eval (Coeffs.ofList (a0 :: a1 :: a2 :: t)) = a2
theorem Lean.Omega.LinearCombo.coordinate_eval_3 {a0 a1 a2 a3 : Int} {t : List Int} :
(coordinate 3).eval (Coeffs.ofList (a0 :: a1 :: a2 :: a3 :: t)) = a3
theorem Lean.Omega.LinearCombo.coordinate_eval_4 {a0 a1 a2 a3 a4 : Int} {t : List Int} :
(coordinate 4).eval (Coeffs.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: t)) = a4
theorem Lean.Omega.LinearCombo.coordinate_eval_5 {a0 a1 a2 a3 a4 a5 : Int} {t : List Int} :
(coordinate 5).eval (Coeffs.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: t)) = a5
theorem Lean.Omega.LinearCombo.coordinate_eval_6 {a0 a1 a2 a3 a4 a5 a6 : Int} {t : List Int} :
(coordinate 6).eval (Coeffs.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: a6 :: t)) = a6
theorem Lean.Omega.LinearCombo.coordinate_eval_7 {a0 a1 a2 a3 a4 a5 a6 a7 : Int} {t : List Int} :
(coordinate 7).eval (Coeffs.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: a6 :: a7 :: t)) = a7
theorem Lean.Omega.LinearCombo.coordinate_eval_8 {a0 a1 a2 a3 a4 a5 a6 a7 a8 : Int} {t : List Int} :
(coordinate 8).eval (Coeffs.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: a6 :: a7 :: a8 :: t)) = a8
theorem Lean.Omega.LinearCombo.coordinate_eval_9 {a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 : Int} {t : List Int} :
(coordinate 9).eval (Coeffs.ofList (a0 :: a1 :: a2 :: a3 :: a4 :: a5 :: a6 :: a7 :: a8 :: a9 :: t)) = a9

Implementation of addition on LinearCombo.

Equations
@[simp]
theorem Lean.Omega.LinearCombo.add_const {l₁ l₂ : LinearCombo} :
(l₁ + l₂).const = l₁.const + l₂.const
@[simp]
theorem Lean.Omega.LinearCombo.add_coeffs {l₁ l₂ : LinearCombo} :
(l₁ + l₂).coeffs = l₁.coeffs + l₂.coeffs

Implementation of subtraction on LinearCombo.

Equations
@[simp]
theorem Lean.Omega.LinearCombo.sub_const {l₁ l₂ : LinearCombo} :
(l₁ - l₂).const = l₁.const - l₂.const
@[simp]
theorem Lean.Omega.LinearCombo.sub_coeffs {l₁ l₂ : LinearCombo} :
(l₁ - l₂).coeffs = l₁.coeffs - l₂.coeffs

Implementation of negation on LinearCombo.

Equations
theorem Lean.Omega.LinearCombo.sub_eq_add_neg (l₁ l₂ : LinearCombo) :
l₁ - l₂ = l₁ + -l₂

Implementation of scalar multiplication of a LinearCombo by an Int.

Equations
@[simp]
theorem Lean.Omega.LinearCombo.smul_const {lc : LinearCombo} {i : Int} :
(i * lc).const = i * lc.const
@[simp]
@[simp]
theorem Lean.Omega.LinearCombo.add_eval (l₁ l₂ : LinearCombo) (v : Coeffs) :
(l₁ + l₂).eval v = l₁.eval v + l₂.eval v
@[simp]
@[simp]
theorem Lean.Omega.LinearCombo.sub_eval (l₁ l₂ : LinearCombo) (v : Coeffs) :
(l₁ - l₂).eval v = l₁.eval v - l₂.eval v
@[simp]
theorem Lean.Omega.LinearCombo.smul_eval (lc : LinearCombo) (i : Int) (v : Coeffs) :
(i * lc).eval v = i * lc.eval v
theorem Lean.Omega.LinearCombo.smul_eval_comm (lc : LinearCombo) (i : Int) (v : Coeffs) :
(i * lc).eval v = lc.eval v * i

Multiplication of two linear combinations. This is useful only if at least one of the linear combinations is constant, and otherwise should be considered as a junk value.

Equations
theorem Lean.Omega.LinearCombo.mul_eval_of_const_left (l₁ l₂ : LinearCombo) (v : Coeffs) (w : l₁.coeffs.isZero) :
(l₁.mul l₂).eval v = l₁.eval v * l₂.eval v
theorem Lean.Omega.LinearCombo.mul_eval_of_const_right (l₁ l₂ : LinearCombo) (v : Coeffs) (w : l₂.coeffs.isZero) :
(l₁.mul l₂).eval v = l₁.eval v * l₂.eval v
theorem Lean.Omega.LinearCombo.mul_eval (l₁ l₂ : LinearCombo) (v : Coeffs) (w : l₁.coeffs.isZero l₂.coeffs.isZero) :
(l₁.mul l₂).eval v = l₁.eval v * l₂.eval v