Documentation

Lean.Data.SMap

structure Lean.SMap (α : Type u) (β : Type v) [BEq α] [Hashable α] :
Type (max u v)

Staged map for implementing the Environment. The idea is to store imported entries into a hashtable and local entries into a persistent hashtable.

Hypotheses:

  • The number of entries (i.e., declarations) coming from imported files is much bigger than the number of entries in the current file.
  • HashMap is faster than PersistentHashMap.
  • When we are reading imported files, we have exclusive access to the map, and efficient destructive updates are performed.

Remarks:

  • We never remove declarations from the Environment. In principle, we could support deletion by using (PHashMap α (Option β)) where the value none would indicate that an entry was "removed" from the hashtable.
  • We do not need additional bookkeeping for extracting the local entries.
Instances For
instance Lean.SMap.instInhabited {α : Type u} {β : Type v} [BEq α] [Hashable α] :
Inhabited (SMap α β)
Equations
def Lean.SMap.empty {α : Type u} {β : Type v} [BEq α] [Hashable α] :
SMap α β
Equations
@[inline]
def Lean.SMap.fromHashMap {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : Std.HashMap α β) (stage₁ : Bool := true) :
SMap α β
Equations
@[specialize #[]]
def Lean.SMap.insert {α : Type u} {β : Type v} [BEq α] [Hashable α] :
SMap α βαβSMap α β
Equations
@[specialize #[]]
def Lean.SMap.insert' {α : Type u} {β : Type v} [BEq α] [Hashable α] :
SMap α βαβSMap α β
Equations
@[specialize #[]]
def Lean.SMap.find? {α : Type u} {β : Type v} [BEq α] [Hashable α] :
SMap α βαOption β
Equations
@[inline]
def Lean.SMap.findD {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : SMap α β) (a : α) (b₀ : β) :
β
Equations
@[inline]
def Lean.SMap.find! {α : Type u} {β : Type v} [BEq α] [Hashable α] [Inhabited β] (m : SMap α β) (a : α) :
β
Equations
@[specialize #[]]
def Lean.SMap.contains {α : Type u} {β : Type v} [BEq α] [Hashable α] :
SMap α βαBool
Equations
@[specialize #[]]
def Lean.SMap.find?' {α : Type u} {β : Type v} [BEq α] [Hashable α] :
SMap α βαOption β

Similar to find?, but searches for result in the hashmap first. So, the result is correct only if we never "overwrite" map₁ entries using map₂.

Equations
def Lean.SMap.forM {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Type u_1 → Type u_1} [Monad m] (s : SMap α β) (f : αβm PUnit) :
Equations
instance Lean.SMap.instForMProd {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Type u_1 → Type u_1} :
ForM m (SMap α β) (α × β)
Equations
instance Lean.SMap.instForInProd {α : Type u} {β : Type v} [BEq α] [Hashable α] {m : Type (max u_1 u_2) → Type u_1} :
ForIn m (SMap α β) (α × β)
Equations
def Lean.SMap.switch {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : SMap α β) :
SMap α β

Move from stage 1 into stage 2.

Equations
@[inline]
def Lean.SMap.foldStage2 {α : Type u} {β : Type v} [BEq α] [Hashable α] {σ : Type w} (f : σαβσ) (s : σ) (m : SMap α β) :
σ
Equations
def Lean.SMap.foldM {α : Type u} {β : Type v} [BEq α] [Hashable α] {σ : Type w} {m : Type w → Type w} [Monad m] (f : σαβm σ) (init : σ) (map : SMap α β) :
m σ

Monadic fold over a staged map.

Equations
def Lean.SMap.fold {α : Type u} {β : Type v} [BEq α] [Hashable α] {σ : Type w} (f : σαβσ) (init : σ) (m : SMap α β) :
σ
Equations
def Lean.SMap.numBuckets {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : SMap α β) :
Equations
def Lean.SMap.toList {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : SMap α β) :
List (α × β)
Equations
def List.toSMap {α : Type u_1} {β : Type u_2} [BEq α] [Hashable α] (es : List (α × β)) :
Lean.SMap α β
Equations
  • One or more equations did not get rendered due to their size.
instance Lean.instReprSMap {α : Type u_1} {β : Type u_2} {x✝ : BEq α} {x✝¹ : Hashable α} [Repr α] [Repr β] :
Repr (SMap α β)
Equations