Literal values for Expr
.
Equations
- Lean.instInhabitedLiteral = { default := Lean.Literal.natVal default }
Equations
- Lean.instBEqLiteral = { beq := Lean.beqLiteral✝ }
Equations
- Lean.instReprLiteral = { reprPrec := Lean.reprLiteral✝ }
Equations
- (Lean.Literal.natVal a).hash = hash a
- (Lean.Literal.strVal a).hash = hash a
Equations
- Lean.instHashableLiteral = { hash := Lean.Literal.hash }
Total order on Expr
literal values.
Natural number values are smaller than string literal values.
Equations
- (Lean.Literal.natVal val).lt (Lean.Literal.strVal val_1) = true
- (Lean.Literal.natVal v₁).lt (Lean.Literal.natVal v₂) = decide (v₁ < v₂)
- (Lean.Literal.strVal v₁).lt (Lean.Literal.strVal v₂) = decide (v₁ < v₂)
- x✝¹.lt x✝ = false
Equations
- Lean.instLTLiteral = { lt := fun (a b : Lean.Literal) => a.lt b = true }
Equations
- Lean.instDecidableLtLiteral a b = inferInstanceAs (Decidable (a.lt b = true))
Arguments in forallE binders can be labelled as implicit or explicit.
Each lam
or forallE
binder comes with a binderInfo
argument (stored in ExprData).
This can be set to
default
--(x : α)
implicit
--{x : α}
strict_implicit
--⦃x : α⦄
inst_implicit
--[x : α]
.aux_decl
-- Auxiliary definitions are helper methods that Lean generates.aux_decl
is used for_match
,_fun_match
,_let_match
and the self reference that appears in recursive pattern matching.
The difference between implicit {}
and strict-implicit ⦃⦄
is how
implicit arguments are treated that are not followed by explicit arguments.
{}
arguments are applied eagerly, while ⦃⦄
arguments are left partially applied:
def foo {x : Nat} : Nat := x
def bar ⦃x : Nat⦄ : Nat := x
#check foo -- foo : Nat
#check bar -- bar : ⦃x : Nat⦄ → Nat
See also the Lean manual.
- default : BinderInfo
Default binder annotation, e.g.
(x : α)
- implicit : BinderInfo
Implicit binder annotation, e.g.,
{x : α}
- strictImplicit : BinderInfo
Strict implicit binder annotation, e.g.,
{{ x : α }}
- instImplicit : BinderInfo
Local instance binder annotataion, e.g.,
[Decidable α]
Equations
- Lean.instInhabitedBinderInfo = { default := Lean.BinderInfo.default }
Equations
- Lean.instBEqBinderInfo = { beq := Lean.beqBinderInfo✝ }
Equations
- Lean.instReprBinderInfo = { reprPrec := Lean.reprBinderInfo✝ }
Equations
Return true
if the given BinderInfo
does not correspond to an implicit binder annotation
(i.e., implicit
, strictImplicit
, or instImplicit
).
Equations
- Lean.instHashableBinderInfo = { hash := Lean.BinderInfo.hash }
Return true
if the given BinderInfo
is an instance implicit annotation (e.g., [Decidable α]
)
Equations
Return true
if the given BinderInfo
is a regular implicit annotation (e.g., {α : Type u}
)
Equations
Return true
if the given BinderInfo
is a strict implicit annotation (e.g., {{α : Type u}}
)
Equations
- Lean.MData.empty = { entries := [] }
Cached hash code, cached results, and other data for Expr
.
- hash : 32-bits
- approxDepth : 8-bits -- the approximate depth is used to minimize the number of hash collisions
- hasFVar : 1-bit -- does it contain free variables?
- hasExprMVar : 1-bit -- does it contain metavariables?
- hasLevelMVar : 1-bit -- does it contain level metavariables?
- hasLevelParam : 1-bit -- does it contain level parameters?
- looseBVarRange : 20-bits
Remark: this is mostly an internal datastructure used to implement Expr
,
most will never have to use it.
Equations
Equations
Equations
- Lean.instBEqData_1 = { beq := fun (a b : UInt64) => a == b }
Equations
- c.approxDepth = ((UInt64.shiftRight c 32).land 255).toUInt8
Equations
- c.looseBVarRange = (UInt64.shiftRight c 44).toUInt32
Equations
- c.hasFVar = ((UInt64.shiftRight c 40).land 1 == 1)
Equations
- c.hasExprMVar = ((UInt64.shiftRight c 41).land 1 == 1)
Equations
- c.hasLevelMVar = ((UInt64.shiftRight c 42).land 1 == 1)
Equations
- c.hasLevelParam = ((UInt64.shiftRight c 43).land 1 == 1)
Optimized version of Expr.mkData
for applications.
Equations
- One or more equations did not get rendered due to their size.
Equations
- Lean.Expr.mkDataForBinder h looseBVarRange approxDepth hasFVar hasExprMVar hasLevelMVar hasLevelParam = Lean.Expr.mkData h looseBVarRange approxDepth hasFVar hasExprMVar hasLevelMVar hasLevelParam
Equations
- Lean.Expr.mkDataForLet h looseBVarRange approxDepth hasFVar hasExprMVar hasLevelMVar hasLevelParam = Lean.Expr.mkData h looseBVarRange approxDepth hasFVar hasExprMVar hasLevelMVar hasLevelParam
Equations
- One or more equations did not get rendered due to their size.
The unique free variable identifier. It is just a hierarchical name,
but we wrap it in FVarId
to make sure they don't get mixed up with MVarId
.
This is not the user-facing name for a free variable. This information is stored
in the local context (LocalContext
). The unique identifiers are generated using
a NameGenerator
.
- name : Name
Equations
- Lean.instInhabitedFVarId = { default := { name := default } }
Equations
- Lean.instBEqFVarId = { beq := Lean.beqFVarId✝ }
Equations
- Lean.instHashableFVarId = { hash := Lean.hashFVarId✝ }
Equations
- Lean.instReprFVarId = { reprPrec := fun (n : Lean.FVarId) (p : Nat) => reprPrec n.name p }
A set of unique free variable identifiers. This is a persistent data structure implemented using red-black trees.
Equations
- Lean.FVarIdSet = Lean.RBTree Lean.FVarId fun (x1 x2 : Lean.FVarId) => x1.name.quickCmp x2.name
Equations
- Lean.instFVarIdSetEmptyCollection = Lean.instEmptyCollectionRBTree Lean.FVarId fun (x1 x2 : Lean.FVarId) => x1.name.quickCmp x2.name
Equations
- Lean.instForInFVarIdSetFVarId = inferInstanceAs (ForIn m (Lean.RBTree Lean.FVarId fun (x1 x2 : Lean.FVarId) => x1.name.quickCmp x2.name) Lean.FVarId)
Equations
- s.insert fvarId = Lean.RBTree.insert s fvarId
A set of unique free variable identifiers implemented using hashtables. Hashtables are faster than red-black trees if they are used linearly. They are not persistent data-structures.
Equations
A mapping from free variable identifiers to values of type α
.
This is a persistent data structure implemented using red-black trees.
Equations
- Lean.FVarIdMap α = Lean.RBMap Lean.FVarId α fun (x1 x2 : Lean.FVarId) => x1.name.quickCmp x2.name
Equations
- s.insert fvarId a = Lean.RBMap.insert s fvarId a
Equations
- Lean.instEmptyCollectionFVarIdMap = inferInstanceAs (EmptyCollection (Lean.RBMap Lean.FVarId α fun (x1 x2 : Lean.FVarId) => x1.name.quickCmp x2.name))
Equations
- Lean.instInhabitedFVarIdMap = { default := ∅ }
Universe metavariable Id
- name : Name
Equations
- Lean.instInhabitedMVarId = { default := { name := default } }
Equations
- Lean.instBEqMVarId = { beq := Lean.beqMVarId✝ }
Equations
- Lean.instHashableMVarId = { hash := Lean.hashMVarId✝ }
Equations
- Lean.instReprMVarId = { reprPrec := Lean.reprMVarId✝ }
Equations
- Lean.instReprMVarId_1 = { reprPrec := fun (n : Lean.MVarId) (p : Nat) => reprPrec n.name p }
Equations
- Lean.MVarIdSet = Lean.RBTree Lean.MVarId fun (x1 x2 : Lean.MVarId) => x1.name.quickCmp x2.name
Equations
- Lean.instMVarIdSetEmptyCollection = Lean.instEmptyCollectionRBTree Lean.MVarId fun (x1 x2 : Lean.MVarId) => x1.name.quickCmp x2.name
Equations
- s.insert mvarId = Lean.RBTree.insert s mvarId
Equations
- Lean.instForInMVarIdSetMVarId = inferInstanceAs (ForIn m (Lean.RBTree Lean.MVarId fun (x1 x2 : Lean.MVarId) => x1.name.quickCmp x2.name) Lean.MVarId)
Equations
- Lean.MVarIdMap α = Lean.RBMap Lean.MVarId α fun (x1 x2 : Lean.MVarId) => x1.name.quickCmp x2.name
Equations
- s.insert mvarId a = Lean.RBMap.insert s mvarId a
Equations
- Lean.instEmptyCollectionMVarIdMap = inferInstanceAs (EmptyCollection (Lean.RBMap Lean.MVarId α fun (x1 x2 : Lean.MVarId) => x1.name.quickCmp x2.name))
Equations
- Lean.instForInMVarIdMapProdMVarId = inferInstanceAs (ForIn m (Lean.RBMap Lean.MVarId α fun (x1 x2 : Lean.MVarId) => x1.name.quickCmp x2.name) (Lean.MVarId × α))
Equations
- Lean.instInhabitedMVarIdMap = { default := ∅ }
Lean expressions. This data structure is used in the kernel and elaborator. However, expressions sent to the kernel should not contain metavariables.
Remark: we use the E
suffix (short for Expr
) to avoid collision with keywords.
We considered using «...», but it is too inconvenient to use.
- bvar
(deBruijnIndex : Nat)
: Expr
The
bvar
constructor represents bound variables, i.e. occurrences of a variable in the expression where there is a variable binder above it (i.e. introduced by alam
,forallE
, orletE
).The
deBruijnIndex
parameter is the de-Bruijn index for the bound variable. See the Wikipedia page on de-Bruijn indices for additional information.For example, consider the expression
fun x : Nat => forall y : Nat, x = y
. Thex
andy
variables in the equality expression are constructed usingbvar
and bound to the binders introduced by the earlierlam
andforallE
constructors. Here is the correspondingExpr
representation for the same expression:.lam `x (.const `Nat []) (.forallE `y (.const `Nat []) (.app (.app (.app (.const `Eq [.succ .zero]) (.const `Nat [])) (.bvar 1)) (.bvar 0)) .default) .default
- fvar
(fvarId : FVarId)
: Expr
The
fvar
constructor represent free variables. These free variable occurrences are not bound by an earlierlam
,forallE
, orletE
constructor and its binder exists in a local context only.Note that Lean uses the locally nameless approach. See McBride and McKinna for additional details.
When "visiting" the body of a binding expression (i.e.
lam
,forallE
, orletE
), bound variables are converted into free variables using a unique identifier, and their user-facing name, type, value (forLetE
), and binder annotation are stored in theLocalContext
. - mvar
(mvarId : MVarId)
: Expr
Metavariables are used to represent "holes" in expressions, and goals in the tactic framework. Metavariable declarations are stored in the
MetavarContext
. Metavariables are used during elaboration, and are not allowed in the kernel, or in the code generator. - sort (u : Level) : Expr
- const
(declName : Name)
(us : List Level)
: Expr
A (universe polymorphic) constant that has been defined earlier in the module or by another imported module. For example,
@Eq.{1}
is represented asExpr.const `Eq [.succ .zero]
, and@Array.map.{0, 0}
is represented asExpr.const `Array.map [.zero, .zero]
. - app
(fn arg : Expr)
: Expr
A function application.
For example, the natural number one, i.e.
Nat.succ Nat.zero
is represented asExpr.app (.const `Nat.succ []) (.const .zero [])
. Note that multiple arguments are represented using partial application.For example, the two argument application
f x y
is represented asExpr.app (.app f x) y
. - lam (binderName : Name) (binderType body : Expr) (binderInfo : BinderInfo) : Expr
- forallE
(binderName : Name)
(binderType body : Expr)
(binderInfo : BinderInfo)
: Expr
A dependent arrow
(a : α) → β)
(aka forall-expression) whereβ
may dependent ona
. Note that this constructor is also used to represent non-dependent arrows whereβ
does not depend ona
.For example:
- letE
(declName : Name)
(type value body : Expr)
(nonDep : Bool)
: Expr
Let-expressions.
IMPORTANT: The
nonDep
flag is for "local" use only. That is, a module should not "trust" its value for any purpose. In the intended use-case, the compiler will set this flag, and be responsible for maintaining it. Other modules may not preserve its value while applying transformations.Given an environment, a metavariable context, and a local context, we say a let-expression
let x : t := v; e
is non-dependent when it is equivalent to(fun x : t => e) v
. In contrast, the dependent let-expressionlet n : Nat := 2; fun (a : Array Nat n) (b : Array Nat 2) => a = b
is type correct, but(fun (n : Nat) (a : Array Nat n) (b : Array Nat 2) => a = b) 2
is not.The let-expression
let x : Nat := 2; Nat.succ x
is represented asExpr.letE `x (.const `Nat []) (.lit (.natVal 2)) (.app (.const `Nat.succ []) (.bvar 0)) true
- lit : Literal → Expr
Natural number and string literal values.
They are not really needed, but provide a more compact representation in memory for these two kinds of literals, and are used to implement efficient reduction in the elaborator and kernel. The "raw" natural number
2
can be represented asExpr.lit (.natVal 2)
. Note that, it is definitionally equal to:Expr.app (.const `Nat.succ []) (.app (.const `Nat.succ []) (.const `Nat.zero []))
- mdata
(data : MData)
(expr : Expr)
: Expr
Metadata (aka annotations).
We use annotations to provide hints to the pretty-printer, store references to
Syntax
nodes, position information, and save information for elaboration procedures (e.g., we use theinaccessible
annotation during elaboration to markExpr
s that correspond to inaccessible patterns).Note that
Expr.mdata data e
is definitionally equal toe
. - proj
(typeName : Name)
(idx : Nat)
(struct : Expr)
: Expr
Projection-expressions. They are redundant, but are used to create more compact terms, speedup reduction, and implement eta for structures. The type of
struct
must be an structure-like inductive type. That is, it has only one constructor, is not recursive, and it is not an inductive predicate. The kernel and elaborators check whether thetypeName
matches the type ofstruct
, and whether the (zero-based) index is valid (i.e., it is smaller than the number of constructor fields). When exporting Lean developments to other systems,proj
can be replaced withtypeName
.rec
applications.Example, given
a : Nat × Bool
,a.1
is represented as.proj `Prod 0 a
Instances For
- Lean.Compiler.LCNF.instTraverseFVarExpr
- Lean.Expr.instBEq
- Lean.Expr.instHashable
- Lean.Expr.instToString
- Lean.MessageData.instCoeExpr
- Lean.Meta.CheckAssignment.instMonadCacheExprCheckAssignmentM
- Lean.MetavarContext.LevelMVarToParam.instMonadCacheExprStructEqExprM
- Lean.MetavarContext.MkBinding.instMonadHashMapCacheAdapterExprStructEqExprM
- Lean.instCoeExprExprStructEq
- Lean.instInhabitedExpr
- Lean.instReprExpr
- Lean.instToMessageDataExpr
Equations
- One or more equations did not get rendered due to their size.
- (Lean.Expr.const n lvls).data = Lean.Expr.mkData (mixHash 5 (mixHash (hash n) (hash lvls))) 0 0 false false (lvls.any Lean.Level.hasMVar) (lvls.any Lean.Level.hasParam)
- (Lean.Expr.bvar idx).data = Lean.Expr.mkData (mixHash 7 (hash idx)) (idx + 1)
- (Lean.Expr.sort lvl).data = Lean.Expr.mkData (mixHash 11 (hash lvl)) 0 0 false false lvl.hasMVar lvl.hasParam
- (Lean.Expr.fvar fvarId).data = Lean.Expr.mkData (mixHash 13 (hash fvarId)) 0 0 true
- (Lean.Expr.mvar fvarId).data = Lean.Expr.mkData (mixHash 17 (hash fvarId)) 0 0 false true
- (f.app a).data = Lean.Expr.mkAppData f.data a.data
- (Lean.Expr.lit l).data = Lean.Expr.mkData (mixHash 3 (hash l))
Equations
- Lean.instReprExpr = { reprPrec := Lean.reprExpr✝ }
Equations
- Lean.instInhabitedExpr = { default := Lean.Expr.const `_inhabitedExprDummy [] }
The constructor name for the given expression. This is used for debugging purposes.
Equations
- (Lean.Expr.bvar a).ctorName = "bvar"
- (Lean.Expr.fvar a).ctorName = "fvar"
- (Lean.Expr.mvar a).ctorName = "mvar"
- (Lean.Expr.sort a).ctorName = "sort"
- (Lean.Expr.const a a_1).ctorName = "const"
- (a.app a_1).ctorName = "app"
- (Lean.Expr.lam a a_1 a_2 a_3).ctorName = "lam"
- (Lean.Expr.forallE a a_1 a_2 a_3).ctorName = "forallE"
- (Lean.Expr.letE a a_1 a_2 a_3 a_4).ctorName = "letE"
- (Lean.Expr.lit a).ctorName = "lit"
- (Lean.Expr.mdata a a_1).ctorName = "mdata"
- (Lean.Expr.proj a a_1 a_2).ctorName = "proj"
Equations
- Lean.Expr.instHashable = { hash := Lean.Expr.hash }
Return true
if e
contains expression metavariables.
This is a constant time operation.
Equations
- e.hasExprMVar = e.data.hasExprMVar
Return true
if e
contains universe (aka Level
) metavariables.
This is a constant time operation.
Equations
Does the expression contain level (aka universe) or expression metavariables? This is a constant time operation.
Equations
- e.hasMVar = (e.data.hasExprMVar || e.data.hasLevelMVar)
Return true if e
contains universe level parameters.
This is a constant time operation.
Equations
Return the approximated depth of an expression. This information is used to compute
the expression hash code, and speedup comparisons.
This is a constant time operation. We say it is approximate because it maxes out at 255
.
Equations
The range of de-Bruijn variables that are loose.
That is, bvars that are not bound by a binder.
For example, bvar i
has range i + 1
and
an expression with no loose bvars has range 0
.
Equations
Return the binder information if e
is a lambda or forall expression, and .default
otherwise.
Equations
- (Lean.Expr.forallE binderName binderType body bi).binderInfo = bi
- (Lean.Expr.lam binderName binderType body bi).binderInfo = bi
- e.binderInfo = Lean.BinderInfo.default
Export functions.
Equations
Equations
Equations
Equations
mkConst declName us
return .const declName us
.
Equations
- Lean.mkConst declName us = Lean.Expr.const declName us
Return the type of a literal value.
Equations
- (Lean.Literal.natVal a).type = Lean.mkConst `Nat
- (Lean.Literal.strVal a).type = Lean.mkConst `String
Equations
.bvar idx
is now the preferred form.
Equations
- Lean.mkBVar idx = Lean.Expr.bvar idx
.sort u
is now the preferred form.
Equations
.fvar fvarId
is now the preferred form.
This function is seldom used, free variables are often automatically created using the
telescope functions (e.g., forallTelescope
and lambdaTelescope
) at MetaM
.
Equations
- Lean.mkFVar fvarId = Lean.Expr.fvar fvarId
.mvar mvarId
is now the preferred form.
This function is seldom used, metavariables are often created using functions such
as mkFreshExprMVar
at MetaM
.
Equations
- Lean.mkMVar mvarId = Lean.Expr.mvar mvarId
.mdata m e
is now the preferred form.
Equations
- Lean.mkMData m e = Lean.Expr.mdata m e
.proj structName idx struct
is now the preferred form.
Equations
- Lean.mkProj structName idx struct = Lean.Expr.proj structName idx struct
.lam x t b bi
is now the preferred form.
Equations
- Lean.mkLambda x bi t b = Lean.Expr.lam x t b bi
.forallE x t b bi
is now the preferred form.
Equations
- Lean.mkForall x bi t b = Lean.Expr.forallE x t b bi
Return Unit -> type
. Do not confuse with Thunk type
Equations
- Lean.mkSimpleThunkType type = Lean.mkForall Lean.Name.anonymous Lean.BinderInfo.default (Lean.mkConst `Unit) type
Return fun (_ : Unit), e
Equations
- Lean.mkSimpleThunk type = Lean.mkLambda `_ Lean.BinderInfo.default (Lean.mkConst `Unit) type
.letE x t v b nonDep
is now the preferred form.
Equations
- Lean.mkLet x t v b nonDep = Lean.Expr.letE x t v b nonDep
Equations
- Lean.mkAppB f a b = Lean.mkApp (Lean.mkApp f a) b
Equations
- Lean.mkApp2 f a b = Lean.mkAppB f a b
Equations
- Lean.mkApp3 f a b c = Lean.mkApp (Lean.mkAppB f a b) c
Equations
- Lean.mkApp4 f a b c d = Lean.mkAppB (Lean.mkAppB f a b) c d
Equations
- Lean.mkApp5 f a b c d e = Lean.mkApp (Lean.mkApp4 f a b c d) e
Equations
- Lean.mkApp6 f a b c d e₁ e₂ = Lean.mkAppB (Lean.mkApp4 f a b c d) e₁ e₂
Equations
- Lean.mkApp7 f a b c d e₁ e₂ e₃ = Lean.mkApp3 (Lean.mkApp4 f a b c d) e₁ e₂ e₃
Equations
- Lean.mkApp8 f a b c d e₁ e₂ e₃ e₄ = Lean.mkApp4 (Lean.mkApp4 f a b c d) e₁ e₂ e₃ e₄
Equations
- Lean.mkApp9 f a b c d e₁ e₂ e₃ e₄ e₅ = Lean.mkApp5 (Lean.mkApp4 f a b c d) e₁ e₂ e₃ e₄ e₅
Equations
- Lean.mkApp10 f a b c d e₁ e₂ e₃ e₄ e₅ e₆ = Lean.mkApp6 (Lean.mkApp4 f a b c d) e₁ e₂ e₃ e₄ e₅ e₆
.lit l
is now the preferred form.
Equations
- Lean.mkLit l = Lean.Expr.lit l
Return a natural number literal used in the frontend. It is a OfNat.ofNat
application.
Recall that all theorems and definitions containing numeric literals are encoded using
OfNat.ofNat
applications in the frontend.
Equations
- Lean.mkNatLit n = Lean.mkApp3 (Lean.mkConst `OfNat.ofNat [Lean.levelZero]) (Lean.mkConst `Nat) (Lean.mkRawNatLit n) (Lean.mkApp (Lean.mkConst `instOfNatNat) (Lean.mkRawNatLit n))
Equations
Equations
Equations
Equations
- Lean.mkConstEx c lvls = Lean.mkConst c lvls
Equations
Equations
- Lean.mkLambdaEx n d b bi = Lean.mkLambda n bi d b
Equations
- Lean.mkForallEx n d b bi = Lean.mkForall n bi d b
Equations
- Lean.mkLetEx n t v b = Lean.mkLet n t v b
Equations
Equations
mkAppN f #[a₀, ..., aₙ]
constructs the application f a₀ a₁ ... aₙ
.
Equations
- Lean.mkAppN f args = Array.foldl Lean.mkApp f args
mkAppRange f i j #[a_1, ..., a_i, ..., a_j, ... ]
==> the expression f a_i ... a_{j-1}
Equations
- Lean.mkAppRange f i j args = Lean.mkAppRangeAux✝ j args i f
Same as mkApp f args
but reversing args
.
Equations
- Lean.mkAppRev fn revArgs = Array.foldr (fun (a r : Lean.Expr) => Lean.mkApp r a) fn revArgs
A total order for expressions. We say it is quick because it first compares the hashcodes.
A total order for expressions that takes the structure into account (e.g., variable names).
Return true iff a
and b
are alpha equivalent.
Binder annotations are ignored.
Return true
iff a
and b
are equal.
Binder names and annotations are taken into account.
Return true
if the given expression is of the form .sort (.succ .zero)
.
Equations
Return true
if the given expression is .sort .zero
Equations
Return true
if the given expression is a free variable with the given id.
Examples:
Return true
if the given expression is a forall or lambda expression.
Equations
- (Lean.Expr.mdata data b).appFn!' = b.appFn!'
- (f.app arg).appFn!' = f
- x✝.appFn!' = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.appFn!'" 912 17 "application expected"
Equations
- (Lean.Expr.mdata data b).appArg!' = b.appArg!'
- (f.app arg).appArg!' = arg
- x✝.appArg!' = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.appArg!'" 917 17 "application expected"
Equations
- (Lean.Expr.sort u).sortLevel! = u
- x✝.sortLevel! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.sortLevel!" 929 14 "sort expected"
Equations
- (Lean.Expr.lit a).litValue! = a
- x✝.litValue! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.litValue!" 933 13 "literal expected"
Equations
- (Lean.Expr.lit (Lean.Literal.natVal val)).isRawNatLit = true
- x✝.isRawNatLit = false
Equations
- (Lean.Expr.lit (Lean.Literal.natVal val)).rawNatLit? = some val
- x✝.rawNatLit? = none
Equations
- (Lean.Expr.lit (Lean.Literal.strVal val)).isStringLit = true
- x✝.isStringLit = false
Equations
- ((Lean.Expr.const c us).app a).isCharLit = (c == `Char.ofNat && a.isRawNatLit)
- x✝.isCharLit = false
Equations
- (Lean.Expr.const declName us).constName! = declName
- x✝.constName! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.constName!" 953 17 "constant expected"
Equations
- (Lean.Expr.const declName us).constName? = some declName
- x✝.constName? = none
If the expression is a constant, return that name. Otherwise return Name.anonymous
.
Equations
Equations
- (Lean.Expr.const declName us).constLevels! = us
- x✝.constLevels! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.constLevels!" 965 18 "constant expected"
Equations
- (Lean.Expr.bvar deBruijnIndex).bvarIdx! = deBruijnIndex
- x✝.bvarIdx! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.bvarIdx!" 969 16 "bvar expected"
Equations
- (Lean.Expr.fvar fvarId).fvarId! = fvarId
- x✝.fvarId! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.fvarId!" 973 14 "fvar expected"
Equations
- (Lean.Expr.mvar mvarId).mvarId! = mvarId
- x✝.mvarId! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.mvarId!" 981 14 "mvar expected"
Equations
- (Lean.Expr.forallE binderName binderType body bi).bindingName! = binderName
- (Lean.Expr.lam binderName binderType body bi).bindingName! = binderName
- x✝.bindingName! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.bindingName!" 986 23 "binding expected"
Equations
- (Lean.Expr.forallE binderName binderType body bi).bindingDomain! = binderType
- (Lean.Expr.lam binderName binderType body bi).bindingDomain! = binderType
- x✝.bindingDomain! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.bindingDomain!" 991 23 "binding expected"
Equations
- (Lean.Expr.forallE binderName binderType body bi).bindingBody! = body
- (Lean.Expr.lam binderName binderType body bi).bindingBody! = body
- x✝.bindingBody! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.bindingBody!" 996 23 "binding expected"
Equations
- (Lean.Expr.forallE binderName binderType body bi).bindingInfo! = bi
- (Lean.Expr.lam binderName binderType body bi).bindingInfo! = bi
- x✝.bindingInfo! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.bindingInfo!" 1001 24 "binding expected"
Equations
- (Lean.Expr.letE declName type value body nonDep).letName! = declName
- x✝.letName! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.letName!" 1005 17 "let expression expected"
Equations
- (Lean.Expr.letE declName type value body nonDep).letType! = type
- x✝.letType! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.letType!" 1009 19 "let expression expected"
Equations
- (Lean.Expr.letE declName type value body nonDep).letValue! = value
- x✝.letValue! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.letValue!" 1013 21 "let expression expected"
Equations
- (Lean.Expr.letE declName type value body nonDep).letBody! = body
- x✝.letBody! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.letBody!" 1017 23 "let expression expected"
Equations
- (Lean.Expr.mdata data expr).consumeMData = expr.consumeMData
- x✝.consumeMData = x✝
Equations
- (Lean.Expr.mdata data expr).mdataExpr! = expr
- x✝.mdataExpr! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.mdataExpr!" 1025 17 "mdata expression expected"
Equations
- (Lean.Expr.proj typeName idx struct).projExpr! = struct
- x✝.projExpr! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.projExpr!" 1029 18 "proj expression expected"
Equations
- (Lean.Expr.proj typeName idx struct).projIdx! = idx
- x✝.projIdx! = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.projIdx!" 1033 18 "proj expression expected"
Return the "body" of a forall expression.
Example: let e
be the representation for forall (p : Prop) (q : Prop), p ∧ q
, then
getForallBody e
returns .app (.app (.const `And []) (.bvar 1)) (.bvar 0)
Equations
- (Lean.Expr.forallE binderName binderType body binderInfo).getForallBody = body.getForallBody
- x✝.getForallBody = x✝
Equations
- Lean.Expr.getForallBodyMaxDepth n.succ (Lean.Expr.forallE binderName binderType b binderInfo) = Lean.Expr.getForallBodyMaxDepth n b
- Lean.Expr.getForallBodyMaxDepth 0 x✝ = x✝
- Lean.Expr.getForallBodyMaxDepth x✝¹ x✝ = x✝
Given a sequence of nested foralls (a₁ : α₁) → ... → (aₙ : αₙ) → _
,
returns the names [a₁, ... aₙ]
.
Equations
- (Lean.Expr.forallE binderName binderType body binderInfo).getForallBinderNames = binderName :: body.getForallBinderNames
- x✝.getForallBinderNames = []
Returns the number of leading ∀
binders of an expression. Ignores metadata.
Equations
- (Lean.Expr.mdata data b).getNumHeadForalls = b.getNumHeadForalls
- (Lean.Expr.forallE binderName binderType body binderInfo).getNumHeadForalls = body.getNumHeadForalls + 1
- x✝.getNumHeadForalls = 0
Given f a₁ ... aᵢ
, returns true if f
is a constant
with name n
and has the correct number of arguments.
Equations
- (Lean.Expr.const c us).isAppOfArity x✝ 0 = (c == x✝)
- (f.app arg).isAppOfArity x✝ a.succ = f.isAppOfArity x✝ a
- x✝².isAppOfArity x✝¹ x✝ = false
Similar to isAppOfArity
but skips Expr.mdata
.
Counts the number n
of arguments for an expression f a₁ .. aₙ
.
Equations
Like getAppNumArgs
but ignores metadata.
Equations
Auxiliary definition for getAppNumArgs'
.
Equations
- Lean.Expr.getAppNumArgs'.go (Lean.Expr.mdata data b) x✝ = Lean.Expr.getAppNumArgs'.go b x✝
- Lean.Expr.getAppNumArgs'.go (f.app arg) x✝ = Lean.Expr.getAppNumArgs'.go f (x✝ + 1)
- Lean.Expr.getAppNumArgs'.go x✝¹ x✝ = x✝
Like Lean.Expr.getAppFn
but assumes the application has up to maxArgs
arguments.
If there are any more arguments than this, then they are returned by getAppFn
as part of the function.
In particular, if the given expression is a sequence of function applications f a₁ .. aₙ
,
returns f a₁ .. aₖ
where k
is minimal such that n - k ≤ maxArgs
.
Equations
- Lean.Expr.getBoundedAppFn maxArgs'.succ (f.app arg) = Lean.Expr.getBoundedAppFn maxArgs' f
- Lean.Expr.getBoundedAppFn x✝¹ x✝ = x✝
Given f a₁ a₂ ... aₙ
, returns #[a₁, ..., aₙ]
Equations
- e.getAppArgs = Lean.Expr.getAppArgsAux✝ e (mkArray e.getAppNumArgs (Lean.mkSort Lean.levelZero)) (e.getAppNumArgs - 1)
Like Lean.Expr.getAppArgs
but returns up to maxArgs
arguments.
In particular, given f a₁ a₂ ... aₙ
, returns #[aₖ₊₁, ..., aₙ]
where k
is minimal such that the size of this array is at most maxArgs
.
Equations
- Lean.Expr.getBoundedAppArgs maxArgs e = Lean.Expr.getBoundedAppArgsAux✝ e (mkArray (min maxArgs e.getAppNumArgs) (Lean.mkSort Lean.levelZero)) (min maxArgs e.getAppNumArgs)
Equations
- Lean.Expr.withAppAux k (f.app a) x✝¹ x✝ = Lean.Expr.withAppAux k f (x✝¹.set! x✝ a) (x✝ - 1)
- Lean.Expr.withAppAux k x✝² x✝¹ x✝ = k x✝² x✝¹
Given e = f a₁ a₂ ... aₙ
, returns k f #[a₁, ..., aₙ]
.
Equations
- e.withApp k = Lean.Expr.withAppAux k e (mkArray e.getAppNumArgs (Lean.mkSort Lean.levelZero)) (e.getAppNumArgs - 1)
Given f a_1 ... a_n
, returns #[a_1, ..., a_n]
.
Note that f
may be an application.
The resulting array has size n
even if f.getAppNumArgs < n
.
Equations
- e.getAppArgsN n = Lean.Expr.getAppArgsN.loop n e (mkArray n (Lean.mkSort Lean.levelZero))
Equations
- Lean.Expr.getAppArgsN.loop 0 x✝¹ x✝ = x✝
- Lean.Expr.getAppArgsN.loop i.succ (f.app a) x✝ = Lean.Expr.getAppArgsN.loop i f (x✝.set! i a)
- Lean.Expr.getAppArgsN.loop x✝² x✝¹ x✝ = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.getAppArgsN.loop" 1190 27 "too few arguments at"
Given e
of the form f a_1 ... a_n ... a_m
, return f a_1 ... a_n
.
If n
is greater than the arity, then return e
.
Equations
- e.getAppPrefix n = e.stripArgsN (e.getAppNumArgs - n)
Given e = fn a₁ ... aₙ
, runs f
on fn
and each of the arguments aᵢ
and
makes a new function application with the results.
Equations
- Lean.Expr.traverseApp f e = e.withApp fun (fn : Lean.Expr) (args : Array Lean.Expr) => Lean.mkAppN <$> f fn <*> Array.mapM f args
Same as withApp
but with arguments reversed.
Equations
- e.withAppRev k = Lean.Expr.withAppRevAux✝ k e (Array.mkEmpty e.getAppNumArgs)
Equations
- (fn.app a).getRevArgD 0 x✝ = a
- (f.app arg).getRevArgD i.succ x✝ = f.getRevArgD i x✝
- x✝².getRevArgD x✝¹ x✝ = x✝
Equations
- (fn.app a).getRevArg! 0 = a
- (f.app arg).getRevArg! i.succ = f.getRevArg! i
- x✝¹.getRevArg! x✝ = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.getRevArg!" 1231 20 "invalid index"
Similar to getRevArg!
but skips mdata
Equations
- (Lean.Expr.mdata data a).getRevArg!' x✝ = a.getRevArg!' x✝
- (fn.app a).getRevArg!' 0 = a
- (f.app arg).getRevArg!' i.succ = f.getRevArg!' i
- x✝¹.getRevArg!' x✝ = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.getRevArg!'" 1238 20 "invalid index"
Given f a₀ a₁ ... aₙ
, returns the i
th argument or panics if out of bounds.
Equations
- e.getArg! i n = e.getRevArg! (n - i - 1)
Given f a₀ a₁ ... aₙ
, returns the i
th argument or returns v₀
if out of bounds.
Equations
- e.getArgD i v₀ n = e.getRevArgD (n - i - 1) v₀
Return true
if e
contains any loose bound variables.
This is a constant time operation.
Equations
- e.hasLooseBVars = decide (e.looseBVarRange > 0)
Return true
if e
is a non-dependent arrow.
Remark: the following function assumes e
does not have loose bound variables.
Equations
- (Lean.Expr.forallE binderName binderType body binderInfo).isArrow = !body.hasLooseBVars
- e.isArrow = false
Return true
if e
contains the specified loose bound variable with index bvarIdx
.
This operation traverses the expression tree.
Returns true if e
contains the loose bound variable bvarIdx
in an explicit parameter,
or in the range if considerRange == true
.
Additionally, if the bound variable appears in an implicit parameter,
it transitively looks for that implicit parameter.
Equations
- One or more equations did not get rendered due to their size.
- e.hasLooseBVarInExplicitDomain bvarIdx considerRange = (considerRange && e.hasLooseBVar bvarIdx)
Lift loose bound variables >= s
in e
by d
.
inferImplicit e numParams considerRange
updates the first numParams
parameter binder annotations of the e
forall type.
It marks any parameter with an explicit binder annotation if there is another explicit arguments that depends on it or
the resulting type if considerRange == true
.
Remark: we use this function to infer the binder annotations of structure projections.
Equations
- One or more equations did not get rendered due to their size.
- e.inferImplicit numParams considerRange = e
Instantiates the loose bound variables in e
using the subst
array,
where a loose Expr.bvar i
at "binding depth" d
is instantiated with subst[i - d]
if 0 <= i - d < subst.size
,
and otherwise it is replaced with Expr.bvar (i - subst.size)
; non-loose bound variables are not touched.
If we imagine all expressions as being able to refer to the infinite list of loose bound variables ..., 3, 2, 1, 0 in that order,
then conceptually instantiate
is instantiating the last n
of these and reindexing the remaining ones.
Warning: instantiate
uses the de Bruijn indexing to index the subst
array, which might be the reverse order from what you might expect.
See also Lean.Expr.instantiateRev
.
Terminology. The "binding depth" of a subexpression is the number of bound variables available to that subexpression
by virtue of being in the bodies of Expr.forallE
, Expr.lam
, and Expr.letE
expressions.
A bound variable Expr.bvar i
is "loose" if its de Bruijn index i
is not less than its binding depth.)
About instantiation. Instantiation isn't mere substitution.
When an expression from subst
is being instantiated, its internal loose bound variables have their de Bruijn indices incremented
by the binding depth of the replaced loose bound variable.
This is necessary for the substituted expression to still refer to the correct binders after instantiation.
Similarly, the reason loose bound variables not instantiated using subst
have their de Bruijn indices decremented like Expr.bvar (i - subst.size)
is that instantiate
can be used to eliminate binding expressions internal to a larger expression,
and this adjustment keeps these bound variables referring to the same binders.
Instantiates loose bound variable 0
in e
using the expression subst
,
where in particular a loose Expr.bvar i
at binding depth d
is instantiated with subst
if i = d
,
and otherwise it is replaced with Expr.bvar (i - 1)
; non-loose bound variables are not touched.
If we imagine all expressions as being able to refer to the infinite list of loose bound variables ..., 3, 2, 1, 0 in that order,
then conceptually instantiate1
is instantiating the last one of these and reindexing the remaining ones.
This function is equivalent to instantiate e #[subst]
, but it avoids allocating an array.
See the documentation for Lean.Expr.instantiate
for a description of instantiation.
In short, during instantiation the loose bound variables in subst
have their own de Bruijn indices updated to account
for the binding depth of the replaced loose bound variable.
Instantiates the loose bound variables in e
using the subst
array.
This is equivalent to Lean.Expr.instantiate e subst.reverse
, but it avoids reversing the array.
In particular, rather than instantiating Expr.bvar i
with subst[i - d]
it instantiates with subst[subst.size - 1 - (i - d)]
,
where d
is the binding depth.
This function instantiates with the "forwards" indexing scheme.
For example, if e
represents the expression fun x y => x + y
,
then instantiateRev e.bindingBody!.bindingBody! #[a, b]
yields a + b
.
The instantiate
function on the other hand would yield b + a
, since de Bruijn indices count outwards.
Similar to Lean.Expr.instantiate
, but considers only the substitutions subst
in the range [beginIdx, endIdx)
.
Function panics if beginIdx <= endIdx <= subst.size
does not hold.
This function is equivalent to instantiate e (subst.extract beginIdx endIdx)
, but it does not allocate a new array.
This instantiates with the "backwards" indexing scheme.
See also Lean.Expr.instantiateRevRange
, which instantiates with the "forwards" indexing scheme.
Similar to Lean.Expr.instantiateRev
, but considers only the substitutions subst
in the range [beginIdx, endIdx)
.
Function panics if beginIdx <= endIdx <= subst.size
does not hold.
This function is equivalent to instantiateRev e (subst.extract beginIdx endIdx)
, but it does not allocate a new array.
This instantiates with the "forwards" indexing scheme (see the docstring for Lean.Expr.instantiateRev
for an example).
See also Lean.Expr.instantiateRange
, which instantiates with the "backwards" indexing scheme.
Replace free (or meta) variables xs
with loose bound variables,
with xs
ordered from outermost to innermost de Bruijn index.
For example, e := f x y
with xs := #[x, y]
goes to f #1 #0
,
whereas e := f x y
with xs := #[y, x]
goes to f #0 #1
.
Replace occurrences of the free variable fvar
in e
with v
Equations
- e.replaceFVar fvar v = (e.abstract #[fvar]).instantiate1 v
Replace occurrences of the free variable fvarId
in e
with v
Equations
- e.replaceFVarId fvarId v = e.replaceFVar (Lean.mkFVar fvarId) v
Replace occurrences of the free variables fvars
in e
with vs
Equations
- e.replaceFVars fvars vs = (e.abstract fvars).instantiateRev vs
Equations
- Lean.Expr.instToString = { toString := Lean.Expr.dbgToString }
Returns true when the expression does not have any sub-expressions.
Equations
- (Lean.Expr.const declName us).isAtomic = true
- (Lean.Expr.sort u).isAtomic = true
- (Lean.Expr.bvar deBruijnIndex).isAtomic = true
- (Lean.Expr.lit a).isAtomic = true
- (Lean.Expr.mvar mvarId).isAtomic = true
- (Lean.Expr.fvar fvarId).isAtomic = true
- x✝.isAtomic = false
Equations
- Lean.mkDecIsTrue pred proof = Lean.mkAppB (Lean.mkConst `Decidable.isTrue) pred proof
Equations
- Lean.mkDecIsFalse pred proof = Lean.mkAppB (Lean.mkConst `Decidable.isFalse) pred proof
Equations
Equations
Equations
Equations
Equations
Equations
- Lean.instInhabitedExprStructEq = { default := { val := default } }
Equations
- Lean.instCoeExprExprStructEq = { coe := Lean.ExprStructEq.mk }
Equations
- Lean.ExprStructEq.instBEq = { beq := Lean.ExprStructEq.beq }
Equations
- Lean.ExprStructEq.instHashable = { hash := Lean.ExprStructEq.hash }
Equations
- Lean.ExprStructEq.instToString = { toString := fun (e : Lean.ExprStructEq) => toString e.val }
Equations
Equations
mkAppRevRange f b e args == mkAppRev f (revArgs.extract b e)
Equations
- f.mkAppRevRange beginIdx endIdx revArgs = Lean.Expr.mkAppRevRangeAux✝ revArgs beginIdx f endIdx
If f
is a lambda expression, than "beta-reduce" it using revArgs
.
This function is often used with getAppRev
or withAppRev
.
Examples:
betaRev (fun x y => t x y) #[]
==>fun x y => t x y
betaRev (fun x y => t x y) #[a]
==>fun y => t a y
betaRev (fun x y => t x y) #[a, b]
==>t b a
betaRev (fun x y => t x y) #[a, b, c, d]
==>t d c b a
Supposet
is(fun x y => t x y) a b c d
, thenargs := t.getAppRev
is#[d, c, b, a]
, andbetaRev (fun x y => t x y) #[d, c, b, a]
ist a b c d
.
If useZeta
is true, the function also performs zeta-reduction (reduction of let binders) to create further
opportunities for beta reduction.
Count the number of lambdas at the head of the given expression.
Equations
- (Lean.Expr.lam binderName binderType b binderInfo).getNumHeadLambdas = b.getNumHeadLambdas + 1
- (Lean.Expr.mdata data b).getNumHeadLambdas = b.getNumHeadLambdas
- x✝.getNumHeadLambdas = 0
Return true if the given expression is the function of an expression that is target for (head) beta reduction.
If useZeta = true
, then let
-expressions are visited. That is, it assumes
that zeta-reduction (aka let-expansion) is going to be used.
See isHeadBetaTarget
.
Equations
- Lean.Expr.isHeadBetaTargetFn useZeta (Lean.Expr.lam binderName binderType b binderInfo) = true
- Lean.Expr.isHeadBetaTargetFn useZeta (Lean.Expr.letE declName type v b nonDep) = (useZeta && Lean.Expr.isHeadBetaTargetFn useZeta b)
- Lean.Expr.isHeadBetaTargetFn useZeta (Lean.Expr.mdata data b) = Lean.Expr.isHeadBetaTargetFn useZeta b
- Lean.Expr.isHeadBetaTargetFn useZeta x✝ = false
Return true if the given expression is a target for (head) beta reduction.
If useZeta = true
, then let
-expressions are visited. That is, it assumes
that zeta-reduction (aka let-expansion) is going to be used.
Equations
- e.isHeadBetaTarget useZeta = (e.isApp && Lean.Expr.isHeadBetaTargetFn useZeta e.getAppFn)
If e
is of the form (fun x₁ ... xₙ => f x₁ ... xₙ)
and f
does not contain x₁
, ..., xₙ
,
then return some f
. Otherwise, return none
.
It assumes e
does not have loose bound variables.
Remark: ₙ
may be 0
Equations
Similar to etaExpanded?
, but only succeeds if ₙ ≥ 1
.
Equations
- (Lean.Expr.lam binderName binderType body binderInfo).etaExpandedStrict? = Lean.Expr.etaExpandedAux✝ body 1
- x✝.etaExpandedStrict? = none
Return true
if e
is of the form outParam _
Equations
- e.isOutParam = e.isAppOfArity `outParam 1
Return true
if e
is of the form semiOutParam _
Equations
- e.isSemiOutParam = e.isAppOfArity `semiOutParam 1
Return true
if e
is of the form optParam _ _
Equations
- e.isOptParam = e.isAppOfArity `optParam 2
Return true
if e
is of the form autoParam _ _
Equations
- e.isAutoParam = e.isAppOfArity `autoParam 2
Remove outParam
, optParam
, and autoParam
applications/annotations from e
.
Note that it does not remove nested annotations.
Examples:
- Given
e
of the formoutParam (optParam Nat b)
,consumeTypeAnnotations e = b
. - Given
e
of the formNat → outParam (optParam Nat b)
,consumeTypeAnnotations e = e
.
Remove metadata annotations and outParam
, optParam
, and autoParam
applications/annotations from e
.
Note that it does not remove nested annotations.
Examples:
- Given
e
of the formoutParam (optParam Nat b)
,cleanupAnnotations e = b
. - Given
e
of the formNat → outParam (optParam Nat b)
,cleanupAnnotations e = e
.
Similar to appFn
, but also applies cleanupAnnotations
to resulting function.
This function is used compile the match_expr
term.
Equations
- (fn.app a).appFnCleanup x = fn.cleanupAnnotations
Equations
- e.isFalse = e.cleanupAnnotations.isConstOf `False
getForallArity type
returns the arity of a forall
-type. This function consumes nested annotations,
and performs pending beta reductions. It does not use whnf.
Examples:
- If
a
isNat
,getForallArity a
returns0
- If
a
isNat → Bool
,getForallArity a
returns1
Checks if an expression is a "natural number numeral in normal form",
i.e. of type Nat
, and explicitly of the form OfNat.ofNat n
where n
matches .lit (.natVal n)
for some literal natural number n
.
and if so returns n
.
Equations
- One or more equations did not get rendered due to their size.
Checks if an expression is an "integer numeral in normal form",
i.e. of type Nat
or Int
, and either a natural number numeral in normal form (as specified by nat?
),
or the negation of a positive natural number numeral in normal form,
and if so returns the integer.
Equations
- One or more equations did not get rendered due to their size.
Return true iff e
contains a free variable which satisfies p
.
Equations
- e.hasAnyFVar p = Lean.Expr.hasAnyFVar.visit p e
Return true
if e
contains the given free variable.
Equations
- e.containsFVar fvarId = e.hasAnyFVar fun (x : Lean.FVarId) => x == fvarId
The update functions try to avoid allocating new values using pointer equality.
Note that if the update*!
functions are used under a match-expression,
the compiler will eliminate the double-match.
Equations
- (fn.app arg).updateApp! newFn newArg = Lean.mkApp newFn newArg
- e.updateApp! newFn newArg = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateApp!" 1747 15 "application expected"
Equations
- (Lean.Expr.fvar fvarId).updateFVar! fvarIdNew = if (fvarId == fvarIdNew) = true then Lean.Expr.fvar fvarId else Lean.Expr.fvar fvarIdNew
- e.updateFVar! fvarIdNew = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateFVar!" 1752 20 "fvar expected"
Equations
- (Lean.Expr.const declName us).updateConst! newLevels = Lean.mkConst declName newLevels
- e.updateConst! newLevels = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateConst!" 1763 17 "constant expected"
Equations
- (Lean.Expr.sort u).updateSort! newLevel = Lean.mkSort newLevel
- e.updateSort! newLevel = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateSort!" 1774 14 "level expected"
Equations
- (Lean.Expr.mdata data expr).updateMData! newExpr = Lean.mkMData data newExpr
- e.updateMData! newExpr = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateMData!" 1785 17 "mdata expected"
Equations
- (Lean.Expr.proj typeName idx struct).updateProj! newExpr = Lean.mkProj typeName idx newExpr
- e.updateProj! newExpr = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateProj!" 1796 18 "proj expected"
Equations
- (Lean.Expr.forallE binderName binderType body binderInfo).updateForall! newBinfo newDomain newBody = Lean.mkForall binderName newBinfo newDomain newBody
- e.updateForall! newBinfo newDomain newBody = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateForall!" 1811 23 "forall expected"
Equations
- (Lean.Expr.forallE binderName binderType body binderInfo).updateForallE! newDomain newBody = (Lean.Expr.forallE binderName binderType body binderInfo).updateForall! binderInfo newDomain newBody
- e.updateForallE! newDomain newBody = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateForallE!" 1816 24 "forall expected"
Equations
- (Lean.Expr.lam binderName binderType body binderInfo).updateLambda! newBinfo newDomain newBody = Lean.mkLambda binderName newBinfo newDomain newBody
- e.updateLambda! newBinfo newDomain newBody = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateLambda!" 1831 19 "lambda expected"
Equations
- (Lean.Expr.lam binderName binderType body binderInfo).updateLambdaE! newDomain newBody = (Lean.Expr.lam binderName binderType body binderInfo).updateLambda! binderInfo newDomain newBody
- e.updateLambdaE! newDomain newBody = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateLambdaE!" 1836 20 "lambda expected"
Equations
- (Lean.Expr.letE declName type value body nonDep).updateLet! newType newVal newBody = Lean.Expr.letE declName newType newVal newBody nonDep
- e.updateLet! newType newVal newBody = panicWithPosWithDecl "Lean.Expr" "Lean.Expr.updateLet!" 1851 22 "let expression expected"
Eta reduction. If e
is of the form (fun x => f x)
, then return f
.
Annotate e
with the given option.
The information is stored using metadata around e
.
Equations
- e.setOption optionName val = Lean.mkMData (Lean.KVMap.set Lean.MData.empty optionName val) e
Annotate e
with pp.explicit := flag
The delaborator uses pp
options.
Equations
- e.setPPExplicit flag = e.setOption `pp.explicit flag
Annotate e
with pp.universes := flag
The delaborator uses pp
options.
Equations
- e.setPPUniverses flag = e.setOption `pp.universes flag
Annotate e
with pp.piBinderTypes := flag
The delaborator uses pp
options.
Equations
- e.setPPPiBinderTypes flag = e.setOption `pp.piBinderTypes flag
Annotate e
with pp.funBinderTypes := flag
The delaborator uses pp
options.
Equations
- e.setPPFunBinderTypes flag = e.setOption `pp.funBinderTypes flag
Annotate e
with pp.explicit := flag
The delaborator uses pp
options.
Equations
- e.setPPNumericTypes flag = e.setOption `pp.numericTypes flag
If e
is an application f a_1 ... a_n
annotate f
, a_1
... a_n
with pp.explicit := false
,
and annotate e
with pp.explicit := true
.
Equations
- One or more equations did not get rendered due to their size.
- e.setAppPPExplicit = e
Similar for setAppPPExplicit
, but only annotate children with pp.explicit := false
if
e
does not contain metavariables.
Equations
- One or more equations did not get rendered due to their size.
- e.setAppPPExplicitForExposingMVars = e
Returns true if e
is a let_fun
expression, which is an expression of the form letFun v f
.
Ideally f
is a lambda, but we do not require that here.
Warning: if the let_fun
is applied to additional arguments (such as in (let_fun f := id; id) 1
), this function returns false
.
Equations
- e.isLetFun = e.isAppOfArity `letFun 4
Recognizes a let_fun
expression.
For let_fun n : t := v; b
, returns some (n, t, v, b)
, which are the first four arguments to Lean.Expr.letE
.
Warning: if the let_fun
is applied to additional arguments (such as in (let_fun f := id; id) 1
), this function returns none
.
let_fun
expressions are encoded as letFun v (fun (n : t) => b)
.
They can be created using Lean.Meta.mkLetFun
.
If in the encoding of let_fun
the last argument to letFun
is eta reduced, this returns Name.anonymous
for the binder name.
Equations
Like Lean.Expr.letFun?
, but handles the case when the let_fun
expression is possibly applied to additional arguments.
Returns those arguments in addition to the values returned by letFun?
.
Equations
- One or more equations did not get rendered due to their size.
Maps f
on each immediate child of the given expression.
Equations
- Lean.Expr.traverseChildren f (Lean.Expr.forallE binderName d b binderInfo) = pure (Lean.Expr.forallE binderName d b binderInfo).updateForallE! <*> f d <*> f b
- Lean.Expr.traverseChildren f (Lean.Expr.lam binderName d b binderInfo) = pure (Lean.Expr.lam binderName d b binderInfo).updateLambdaE! <*> f d <*> f b
- Lean.Expr.traverseChildren f (Lean.Expr.mdata data b) = (Lean.Expr.mdata data b).updateMData! <$> f b
- Lean.Expr.traverseChildren f (Lean.Expr.letE declName t v b nonDep) = pure (Lean.Expr.letE declName t v b nonDep).updateLet! <*> f t <*> f v <*> f b
- Lean.Expr.traverseChildren f (l.app r) = pure (l.app r).updateApp! <*> f l <*> f r
- Lean.Expr.traverseChildren f (Lean.Expr.proj typeName idx b) = (Lean.Expr.proj typeName idx b).updateProj! <$> f b
- Lean.Expr.traverseChildren f x✝ = pure x✝
e.foldlM f a
folds the monadic function f
over the subterms of the expression e
,
with initial value a
.
Equations
- Lean.Expr.foldlM f init e = Prod.snd <$> (Lean.Expr.traverseChildren (fun (e' : Lean.Expr) (a : α) => Prod.mk e' <$> f a e') e).run init
Returns the size of e
as a tree, i.e. nodes reachable via multiple paths are counted multiple
times.
This is a naive implementation that visits shared subterms multiple times instead of caching their sizes. It is primarily meant for debugging.
Equations
- (Lean.Expr.forallE binderName d b binderInfo).sizeWithoutSharing = 1 + d.sizeWithoutSharing + b.sizeWithoutSharing
- (Lean.Expr.lam binderName d b binderInfo).sizeWithoutSharing = 1 + d.sizeWithoutSharing + b.sizeWithoutSharing
- (Lean.Expr.mdata data e).sizeWithoutSharing = 1 + e.sizeWithoutSharing
- (Lean.Expr.letE declName t v b nonDep).sizeWithoutSharing = 1 + t.sizeWithoutSharing + v.sizeWithoutSharing + b.sizeWithoutSharing
- (f.app a).sizeWithoutSharing = 1 + f.sizeWithoutSharing + a.sizeWithoutSharing
- (Lean.Expr.proj typeName idx e).sizeWithoutSharing = 1 + e.sizeWithoutSharing
- (Lean.Expr.lit a).sizeWithoutSharing = 1
- (Lean.Expr.const declName us).sizeWithoutSharing = 1
- (Lean.Expr.sort u).sizeWithoutSharing = 1
- (Lean.Expr.mvar mvarId).sizeWithoutSharing = 1
- (Lean.Expr.fvar fvarId).sizeWithoutSharing = 1
- (Lean.Expr.bvar deBruijnIndex).sizeWithoutSharing = 1
Annotate e
with the given annotation name kind
.
It uses metadata to store the annotation.
Equations
- Lean.mkAnnotation kind e = Lean.mkMData (Lean.KVMap.empty.insert kind (Lean.DataValue.ofBool true)) e
Return some e'
if e = mkAnnotation kind e'
Equations
- Lean.annotation? kind (Lean.Expr.mdata data expr) = if (Lean.KVMap.size data == 1 && Lean.KVMap.getBool data kind) = true then some expr else none
- Lean.annotation? kind e = none
Auxiliary annotation used to mark terms marked with the "inaccessible" annotation .(t)
and
_
in patterns.
Equations
- Lean.mkInaccessible e = Lean.mkAnnotation `_inaccessible e
Return some e'
if e = mkInaccessible e'
.
Equations
- Lean.inaccessible? e = Lean.annotation? `_inaccessible e
During elaboration expressions corresponding to pattern matching terms
are annotated with Syntax
objects. This function returns some (stx, p')
if
p
is the pattern p'
annotated with stx
Equations
- One or more equations did not get rendered due to their size.
- Lean.patternWithRef? p = none
Equations
Annotate the pattern p
with stx
. This is an auxiliary annotation
for producing better hover information.
Equations
Return some p
if e
is an annotated pattern (inaccessible?
or patternWithRef?
)
Equations
- Lean.patternAnnotation? e = match Lean.inaccessible? e with | some e => some e | x => match Lean.patternWithRef? e with | some (fst, e) => some e | x => none
Annotate e
with the LHS annotation. The delaborator displays
expressions of the form lhs = rhs
as lhs
when they have this annotation.
This is used to implement the infoview for the conv
mode.
This version of mkLHSGoal
does not check that the argument is an equality.
Equations
- Lean.mkLHSGoalRaw e = Lean.mkAnnotation `_lhsGoal e
Polymorphic operation for generating unique/fresh free variable identifiers.
It is available in any monad m
that implements the interface MonadNameGenerator
.
Equations
- Lean.mkFreshFVarId = do let __do_lift ← Lean.mkFreshId pure { name := __do_lift }
Polymorphic operation for generating unique/fresh metavariable identifiers.
It is available in any monad m
that implements the interface MonadNameGenerator
.
Equations
- Lean.mkFreshMVarId = do let __do_lift ← Lean.mkFreshId pure { name := __do_lift }
Polymorphic operation for generating unique/fresh universe metavariable identifiers.
It is available in any monad m
that implements the interface MonadNameGenerator
.
Equations
- Lean.mkFreshLMVarId = do let __do_lift ← Lean.mkFreshId pure { name := __do_lift }
Return Not p
Equations
- Lean.mkNot p = Lean.mkApp (Lean.mkConst `Not) p
Return p ∨ q
Equations
- Lean.mkOr p q = Lean.mkApp2 (Lean.mkConst `Or) p q
Return p ∧ q
Equations
- Lean.mkAnd p q = Lean.mkApp2 (Lean.mkConst `And) p q
Make an n-ary And
application. mkAndN []
returns True
.
Equations
- Lean.mkAndN [] = Lean.mkConst `True
- Lean.mkAndN [p] = p
- Lean.mkAndN (p :: ps) = Lean.mkAnd p (Lean.mkAndN ps)
Return Classical.em p
Equations
- Lean.mkEM p = Lean.mkApp (Lean.mkConst `Classical.em) p
Return p ↔ q
Equations
- Lean.mkIff p q = Lean.mkApp2 (Lean.mkConst `Iff) p q
Constants for Nat typeclasses.
Equations
Equations
Equations
Equations
Equations
Equations
Given a : Nat
, returns Nat.succ a
Equations
- Lean.mkNatSucc a = Lean.mkApp (Lean.mkConst `Nat.succ) a
Given a b : Nat
, returns a + b
Equations
- Lean.mkNatAdd a b = Lean.mkApp2 Lean.natAddFn✝ a b
Given a b : Nat
, returns a - b
Equations
- Lean.mkNatSub a b = Lean.mkApp2 Lean.natSubFn✝ a b
Given a b : Nat
, returns a * b
Equations
- Lean.mkNatMul a b = Lean.mkApp2 Lean.natMulFn✝ a b
Given a b : Nat
, return a ≤ b
Equations
- Lean.mkNatLE a b = Lean.mkApp2 Lean.natLEPred✝ a b
Given a b : Nat
, return a = b
Equations
- Lean.mkNatEq a b = Lean.mkApp2 Lean.natEqPred✝ a b
Constants for Int typeclasses.
Equations
Equations
Equations
Equations
Equations
Equations
Given a : Int
, returns - a
Equations
Given a b : Int
, returns a + b
Equations
- Lean.mkIntAdd a b = Lean.mkApp2 Lean.intAddFn✝ a b
Given a b : Int
, returns a - b
Equations
- Lean.mkIntSub a b = Lean.mkApp2 Lean.intSubFn✝ a b
Given a b : Int
, returns a * b
Equations
- Lean.mkIntMul a b = Lean.mkApp2 Lean.intMulFn✝ a b
Given a b : Int
, returns a ≤ b
Equations
- Lean.mkIntLE a b = Lean.mkApp2 Lean.intLEPred✝ a b
Given a b : Int
, returns a = b
Equations
- Lean.mkIntEq a b = Lean.mkApp2 Lean.intEqPred✝ a b
Given a b : Int
, returns a ∣ b
Equations
- Lean.mkIntDvd a b = Lean.mkApp4 (Lean.mkConst `Dvd.dvd [0]) Lean.Int.mkType (Lean.mkConst `Int.instDvd) a b
Equations
- One or more equations did not get rendered due to their size.
Equations
- Lean.reflBoolTrue = Lean.mkApp2 (Lean.mkConst `Eq.refl [Lean.levelOne]) (Lean.mkConst `Bool) (Lean.mkConst `Bool.true)