Documentation

Lean.Meta.DiscrTreeTypes

See file DiscrTree.lean for the actual implementation and documentation.

Equations
  • One or more equations did not get rendered due to their size.

Discrimination tree trie. See DiscrTree.

Instances For

Notes regarding term reduction at the DiscrTree module.

@[simp] theorem liftOn_mk (a : α) (f : α → γ) (h : ∀ a₁ a₂, r a₁ a₂ → f a₁ = f a₂) :
    Quot.liftOn (Quot.mk r a) f h = f a := rfl

If we enable iota, then the lhs is reduced to f a. Note that when retrieving terms, we may also disable beta and zeta reduction. See issue https://github.com/leanprover/lean4/issues/2669

inductive Ty where
  | int
  | bool

@[reducible] def Ty.interp (ty : Ty) : Type :=
  Ty.casesOn (motive := fun _ => Type) ty Int Bool

def test {a b c : Ty} (f : a.interp → b.interp → c.interp) (x : a.interp) (y : b.interp) : c.interp :=
  f x y

def f (a b : Ty.bool.interp) : Ty.bool.interp :=
  -- We want to synthesize `BEq Ty.bool.interp` here, and it will fail
  -- if we do not reduce `Ty.bool.interp` to `Bool`.
  test (.==.) a b
structure Lean.Meta.DiscrTree (α : Type) :

Discrimination trees. It is an index from terms to values of type α.

Instances For