Documentation

Std.Classes.Ord

Type classes related to Ord #

This file provides several typeclasses encode properties of an Ord instance. For each typeclass, there is also a variant that does not depend on an Ord instance and takes an explicit comparison function cmp : α → α → Ordering instead.

class Std.ReflCmp {α : Type u} (cmp : ααOrdering) :

A typeclass for comparison functions cmp for which cmp a a = .eq for all a.

  • compare_self {a : α} : cmp a a = Ordering.eq

    Comparison is reflexive.

Instances
@[reducible, inline]
abbrev Std.ReflOrd (α : Type u) [Ord α] :

A typeclasses for ordered types for which compare a a = .eq for all a.

Equations
@[simp]
theorem Std.ReflOrd.compare_self {α : Type u} [Ord α] [ReflOrd α] {a : α} :
class Std.OrientedCmp {α : Type u} (cmp : ααOrdering) :

A typeclass for functions α → α → Ordering which are oriented: flipping the arguments amounts to applying Ordering.swap to the return value.

  • eq_swap {a b : α} : cmp a b = (cmp b a).swap

    Swapping the arguments to cmp swaps the outcome.

Instances
    @[reducible, inline]
    abbrev Std.OrientedOrd (α : Type u) [Ord α] :

    A typeclass for types with an oriented comparison function: flipping the arguments amounts to applying Ordering.swap to the return value.

    Equations
    instance Std.instReflCmpOfOrientedCmp {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] :
    theorem Std.OrientedCmp.gt_iff_lt {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.gt cmp b a = Ordering.lt
    theorem Std.OrientedCmp.lt_of_gt {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.gtcmp b a = Ordering.lt
    theorem Std.OrientedCmp.gt_of_lt {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.ltcmp b a = Ordering.gt
    theorem Std.OrientedCmp.isGE_iff_isLE {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    (cmp a b).isGE = true (cmp b a).isLE = true
    theorem Std.OrientedCmp.isLE_of_isGE {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    (cmp b a).isGE = true(cmp a b).isLE = true
    theorem Std.OrientedCmp.isGE_of_isLE {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    (cmp b a).isLE = true(cmp a b).isGE = true
    theorem Std.OrientedCmp.eq_comm {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.eq cmp b a = Ordering.eq
    theorem Std.OrientedCmp.eq_symm {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.eqcmp b a = Ordering.eq
    theorem Std.OrientedCmp.not_isLE_of_lt {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.lt¬(cmp b a).isLE = true
    theorem Std.OrientedCmp.not_isGE_of_gt {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.gt¬(cmp b a).isGE = true
    theorem Std.OrientedCmp.not_lt_of_isLE {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    (cmp a b).isLE = truecmp b a Ordering.lt
    theorem Std.OrientedCmp.not_gt_of_isGE {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    (cmp a b).isGE = truecmp b a Ordering.gt
    theorem Std.OrientedCmp.not_lt_of_lt {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.ltcmp b a Ordering.lt
    theorem Std.OrientedCmp.not_gt_of_gt {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    cmp a b = Ordering.gtcmp b a Ordering.gt
    theorem Std.OrientedCmp.lt_of_not_isLE {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    ¬(cmp a b).isLE = truecmp b a = Ordering.lt
    theorem Std.OrientedCmp.gt_of_not_isGE {α : Type u} {cmp : ααOrdering} [OrientedCmp cmp] {a b : α} :
    ¬(cmp a b).isGE = truecmp b a = Ordering.gt
    class Std.TransCmp {α : Type u} (cmp : ααOrdering) extends Std.OrientedCmp cmp :

    A typeclass for functions α → α → Ordering which are transitive.

    Instances
      @[reducible, inline]
      abbrev Std.TransOrd (α : Type u) [Ord α] :

      A typeclass for types with a transitive ordering function.

      Equations
      theorem Std.TransCmp.isGE_trans {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (h₁ : (cmp a b).isGE = true) (h₂ : (cmp b c).isGE = true) :
      (cmp a c).isGE = true
      theorem Std.TransCmp.lt_of_lt_of_eq {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.lt) (hbc : cmp b c = Ordering.eq) :
      cmp a c = Ordering.lt
      theorem Std.TransCmp.lt_of_eq_of_lt {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.eq) (hbc : cmp b c = Ordering.lt) :
      cmp a c = Ordering.lt
      theorem Std.TransCmp.gt_of_eq_of_gt {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.eq) (hbc : cmp b c = Ordering.gt) :
      cmp a c = Ordering.gt
      theorem Std.TransCmp.gt_of_gt_of_eq {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.gt) (hbc : cmp b c = Ordering.eq) :
      cmp a c = Ordering.gt
      theorem Std.TransCmp.lt_trans {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.lt) (hbc : cmp b c = Ordering.lt) :
      cmp a c = Ordering.lt
      theorem Std.TransCmp.gt_trans {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.gt) (hbc : cmp b c = Ordering.gt) :
      cmp a c = Ordering.gt
      theorem Std.TransCmp.lt_of_lt_of_isLE {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.lt) (hbc : (cmp b c).isLE = true) :
      cmp a c = Ordering.lt
      theorem Std.TransCmp.lt_of_isLE_of_lt {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : (cmp a b).isLE = true) (hbc : cmp b c = Ordering.lt) :
      cmp a c = Ordering.lt
      theorem Std.TransCmp.gt_of_gt_of_isGE {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.gt) (hbc : (cmp b c).isGE = true) :
      cmp a c = Ordering.gt
      theorem Std.TransCmp.gt_of_isGE_of_gt {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : (cmp a b).isGE = true) (hbc : cmp b c = Ordering.gt) :
      cmp a c = Ordering.gt
      theorem Std.TransCmp.isLE_antisymm {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b : α} (h₁ : (cmp a b).isLE = true) (h₂ : (cmp b a).isLE = true) :
      cmp a b = Ordering.eq
      theorem Std.TransCmp.isGE_antisymm {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b : α} (h₁ : (cmp a b).isGE = true) (h₂ : (cmp b a).isGE = true) :
      cmp a b = Ordering.eq
      theorem Std.TransCmp.eq_trans {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.eq) (hbc : cmp b c = Ordering.eq) :
      cmp a c = Ordering.eq
      theorem Std.TransCmp.congr_left {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hab : cmp a b = Ordering.eq) :
      cmp a c = cmp b c
      theorem Std.TransCmp.congr_right {α : Type u} {cmp : ααOrdering} [TransCmp cmp] {a b c : α} (hbc : cmp b c = Ordering.eq) :
      cmp a b = cmp a c
      class Std.LawfulEqCmp {α : Type u} (cmp : ααOrdering) extends Std.ReflCmp cmp :

      A typeclass for comparison functions satisfying cmp a b = .eq if and only if the logical equality a = b holds.

      This typeclass distinguishes itself from LawfulBEqCmp by using logical equality (=) instead of boolean equality (==).

      Instances
        @[reducible, inline]
        abbrev Std.LawfulEqOrd (α : Type u) [Ord α] :

        A typeclass for types with a comparison function that satisfies compare a b = .eq if and only if the logical equality a = b holds.

        This typeclass distinguishes itself from LawfulBEqOrd by using logical equality (=) instead of boolean equality (==).

        Equations
        @[simp]
        theorem Std.compare_eq_iff_eq {α : Type u} {cmp : ααOrdering} [LawfulEqCmp cmp] {a b : α} :
        cmp a b = Ordering.eq a = b
        @[simp]
        theorem Std.compare_beq_iff_eq {α : Type u} {cmp : ααOrdering} [LawfulEqCmp cmp] {a b : α} :
        (cmp a b == Ordering.eq) = true a = b
        class Std.LawfulBEqCmp {α : Type u} [BEq α] (cmp : ααOrdering) :

        A typeclass for comparison functions satisfying cmp a b = .eq if and only if the boolean equality a == b holds.

        This typeclass distinguishes itself from LawfulEqCmp by using boolean equality (==) instead of logical equality (=).

        • compare_eq_iff_beq {a b : α} : cmp a b = Ordering.eq (a == b) = true

          If two values compare equal, then they are logically equal.

        Instances
        @[reducible, inline]
        abbrev Std.LawfulBEqOrd (α : Type u) [BEq α] [Ord α] :

        A typeclass for types with a comparison function that satisfies compare a b = .eq if and only if the boolean equality a == b holds.

        This typeclass distinguishes itself from LawfulEqOrd by using boolean equality (==) instead of logical equality (=).

        Equations
        instance Std.instLawfulBEqCmpOfLawfulEqCmpOfLawfulBEq {α : Type u} [BEq α] {cmp : ααOrdering} [LawfulEqCmp cmp] [LawfulBEq α] :
        theorem Std.LawfulBEqCmp.equivBEq {α : Type u} [BEq α] {cmp : ααOrdering} [inst : LawfulBEqCmp cmp] [TransCmp cmp] :
        instance Std.LawfulBEqOrd.equivBEq {α : Type u} [BEq α] [Ord α] [LawfulBEqOrd α] [TransOrd α] :
        def Std.Internal.beqOfOrd {α : Type u} [Ord α] :
        BEq α

        Internal funcion to derive a BEq instance from an Ord instance in order to connect the verification machinery for tree maps to the verification machinery for hash maps.

        Equations
        theorem Std.Internal.beq_eq {α : Type u} [Ord α] {a b : α} :
        (a == b) = (compare a b == Ordering.eq)
        theorem Std.Internal.beq_iff {α : Type u} [Ord α] {a b : α} :
        theorem Std.Internal.eq_beqOfOrd_of_lawfulBEqOrd {α : Type u} [Ord α] (inst : BEq α) [instLawful : LawfulBEqOrd α] :
        inst = beqOfOrd