Documentation

Std.Data.DTreeMap.Internal.Cell

The Cell type #

structure Std.DTreeMap.Internal.Cell (α : Type u) [Ord α] (β : αType v) (k : αOrdering) :
Type (max u v)

Type for representing the place in a tree map where a mapping for k could live. Internal implementation detail of the tree map.

def Std.DTreeMap.Internal.Cell.ofEq {α : Type u} {β : αType v} [Ord α] {k : αOrdering} (k' : α) (v' : β k') (hcmp : ∀ [inst : OrientedOrd α], k k' = Ordering.eq) :
Cell α β k

Create a cell with a matching key. Internal implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Cell.of {α : Type u} {β : αType v} [Ord α] (k : α) (v : β k) :
Cell α β (compare k)

Create a cell with a matching key. Internal implementation detail of the tree map

Equations
@[simp]
theorem Std.DTreeMap.Internal.Cell.ofEq_inner {α : Type u} {β : αType v} [Ord α] {k : αOrdering} {k' : α} {v' : β k'} {h : ∀ [inst : OrientedOrd α], k k' = Ordering.eq} :
(ofEq k' v' h).inner = some k', v'
@[simp]
theorem Std.DTreeMap.Internal.Cell.of_inner {α : Type u} {β : αType v} [Ord α] {k : α} {v : β k} :
(of k v).inner = some k, v
def Std.DTreeMap.Internal.Cell.empty {α : Type u} {β : αType v} [Ord α] {k : αOrdering} :
Cell α β k

Create an empty cell. Internal implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.Cell.ofOption {α : Type u} {β : αType v} [Ord α] (k : α) (v? : Option (β k)) :
Cell α β (compare k)

Internal implementation detail of the tree map

Equations
@[simp]
theorem Std.DTreeMap.Internal.Cell.empty_inner {α : Type u} {β : αType v} [Ord α] {k : αOrdering} :
def Std.DTreeMap.Internal.Cell.contains {α : Type u} {β : αType v} [Ord α] {k : αOrdering} (c : Cell α β k) :

Internal implementation detail of the tree map

Equations
@[simp]
theorem Std.DTreeMap.Internal.Cell.contains_of {α : Type u} {β : αType v} [Ord α] {k : α} {v : β k} :
@[simp]
theorem Std.DTreeMap.Internal.Cell.contains_ofEq {α : Type u} {β : αType v} [Ord α] {k : αOrdering} {k' : α} {v' : β k'} {h : ∀ [inst : OrientedOrd α], k k' = Ordering.eq} :
(ofEq k' v' h).contains = true
@[simp]
theorem Std.DTreeMap.Internal.Cell.contains_empty {α : Type u} {β : αType v} [Ord α] {k : αOrdering} :
def Std.DTreeMap.Internal.Cell.get? {α : Type u} {β : αType v} [Ord α] [OrientedOrd α] [LawfulEqOrd α] {k : α} (c : Cell α β (compare k)) :
Option (β k)

Internal implementation detail of the tree map

Equations
@[simp]
theorem Std.DTreeMap.Internal.Cell.get?_empty {α : Type u} {β : αType v} [Ord α] [OrientedOrd α] [LawfulEqOrd α] {k : α} :
def Std.DTreeMap.Internal.Cell.getKey? {α : Type u} {β : αType v} [Ord α] {k : α} (c : Cell α β (compare k)) :

Internal implementation detail of the tree map

Equations
@[simp]
theorem Std.DTreeMap.Internal.Cell.getKey?_empty {α : Type u} {β : αType v} [Ord α] {k : α} :
def Std.DTreeMap.Internal.Cell.alter {α : Type u} {β : αType v} [Ord α] [OrientedOrd α] [LawfulEqOrd α] {k : α} (f : Option (β k)Option (β k)) (c : Cell α β (compare k)) :
Cell α β (compare k)

Internal implementation detail of the tree map

Equations
  • One or more equations did not get rendered due to their size.
theorem Std.DTreeMap.Internal.Cell.ext {α : Type u} {β : αType v} [Ord α] {k : αOrdering} {c c' : Cell α β k} :
c.inner = c'.innerc = c'
def Std.DTreeMap.Internal.Cell.Const.get? {α : Type u} {β : Type v} [Ord α] {k : α} (c : Cell α (fun (x : α) => β) (compare k)) :

Internal implementation detail of the tree map

Equations
@[simp]
theorem Std.DTreeMap.Internal.Cell.Const.get?_empty {α : Type u} {β : Type v} [Ord α] {k : α} :
def Std.DTreeMap.Internal.Cell.Const.alter {α : Type u} {β : Type v} [Ord α] [OrientedOrd α] {k : α} (f : Option βOption β) (c : Cell α (fun (x : α) => β) (compare k)) :
Cell α (fun (x : α) => β) (compare k)

Internal implementation detail of the tree map

Equations
def Std.DTreeMap.Internal.List.findCell {α : Type u} {β : αType v} [Ord α] (l : List ((a : α) × β a)) (k : αOrdering) :
Cell α β k

Internal implementation detail of the tree map

Equations
theorem Std.DTreeMap.Internal.List.findCell_inner {α : Type u} {β : αType v} [Ord α] (l : List ((a : α) × β a)) (k : αOrdering) :
(findCell l k).inner = List.find? (fun (x : (a : α) × β a) => k x.fst == Ordering.eq) l
@[simp]
theorem Std.DTreeMap.Internal.List.findCell_nil {α : Type u} {β : αType v} [Ord α] (k : αOrdering) :