Documentation

Std.Data.DHashMap.Lemmas

Dependent hash map lemmas #

This file contains lemmas about Std.Data.DHashMap. Most of the lemmas require EquivBEq α and LawfulHashable α for the key type α. The easiest way to obtain these instances is to provide an instance of LawfulBEq α.

@[simp]
theorem Std.DHashMap.isEmpty_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {c : Nat} :
@[simp]
theorem Std.DHashMap.isEmpty_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} :
@[reducible, inline, deprecated Std.DHashMap.isEmpty_empty (since := "2025-03-12")]
abbrev Std.DHashMap.isEmpty_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} :
Equations
Instances For
    @[simp]
    theorem Std.DHashMap.isEmpty_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
    theorem Std.DHashMap.mem_iff_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {a : α} :
    theorem Std.DHashMap.contains_congr {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a b : α} (hab : (a == b) = true) :
    theorem Std.DHashMap.mem_congr {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a b : α} (hab : (a == b) = true) :
    a m b m
    @[simp]
    theorem Std.DHashMap.contains_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} {c : Nat} :
    @[simp]
    theorem Std.DHashMap.not_mem_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} {c : Nat} :
    @[simp]
    theorem Std.DHashMap.contains_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} :
    @[reducible, inline, deprecated Std.DHashMap.contains_empty (since := "2025-03-12")]
    abbrev Std.DHashMap.contains_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} :
    Equations
    Instances For
      @[simp]
      theorem Std.DHashMap.not_mem_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} :
      @[reducible, inline, deprecated Std.DHashMap.not_mem_empty (since := "2025-03-12")]
      abbrev Std.DHashMap.not_mem_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} :
      Equations
      Instances For
        theorem Std.DHashMap.contains_of_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a : α} :
        theorem Std.DHashMap.not_mem_of_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a : α} :
        m.isEmpty = true¬a m
        theorem Std.DHashMap.isEmpty_eq_false_iff_exists_contains_eq_true {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
        theorem Std.DHashMap.isEmpty_eq_false_iff_exists_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
        theorem Std.DHashMap.isEmpty_iff_forall_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
        m.isEmpty = true ∀ (a : α), m.contains a = false
        theorem Std.DHashMap.isEmpty_iff_forall_not_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
        m.isEmpty = true ∀ (a : α), ¬a m
        @[simp]
        theorem Std.DHashMap.insert_eq_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {p : (a : α) × β a} :
        @[simp]
        theorem Std.DHashMap.singleton_eq_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {p : (a : α) × β a} :
        @[simp]
        theorem Std.DHashMap.contains_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
        (m.insert k v).contains a = (k == a || m.contains a)
        @[simp]
        theorem Std.DHashMap.mem_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
        a m.insert k v (k == a) = true a m
        theorem Std.DHashMap.contains_of_contains_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
        (m.insert k v).contains a = true(k == a) = falsem.contains a = true
        theorem Std.DHashMap.mem_of_mem_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
        a m.insert k v(k == a) = falsea m
        theorem Std.DHashMap.contains_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
        (m.insert k v).contains k = true
        theorem Std.DHashMap.mem_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
        k m.insert k v
        @[simp]
        theorem Std.DHashMap.size_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {c : Nat} :
        @[simp]
        theorem Std.DHashMap.size_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} :
        @[reducible, inline, deprecated Std.DHashMap.size_empty (since := "2025-03-12")]
        abbrev Std.DHashMap.size_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} :
        Equations
        Instances For
          theorem Std.DHashMap.isEmpty_eq_size_eq_zero {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} :
          m.isEmpty = (m.size == 0)
          theorem Std.DHashMap.size_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
          (m.insert k v).size = if k m then m.size else m.size + 1
          theorem Std.DHashMap.size_le_size_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
          m.size (m.insert k v).size
          theorem Std.DHashMap.size_insert_le {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
          (m.insert k v).size m.size + 1
          @[simp]
          theorem Std.DHashMap.erase_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {k : α} {c : Nat} :
          @[simp]
          theorem Std.DHashMap.erase_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {k : α} :
          @[reducible, inline, deprecated Std.DHashMap.erase_empty (since := "2025-03-12")]
          abbrev Std.DHashMap.erase_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} {k : α} :
          Equations
          Instances For
            @[simp]
            theorem Std.DHashMap.isEmpty_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
            (m.erase k).isEmpty = (m.isEmpty || m.size == 1 && m.contains k)
            @[simp]
            theorem Std.DHashMap.contains_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} :
            (m.erase k).contains a = (!k == a && m.contains a)
            @[simp]
            theorem Std.DHashMap.mem_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} :
            a m.erase k (k == a) = false a m
            theorem Std.DHashMap.contains_of_contains_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} :
            (m.erase k).contains a = truem.contains a = true
            theorem Std.DHashMap.mem_of_mem_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} :
            a m.erase ka m
            theorem Std.DHashMap.size_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
            (m.erase k).size = if k m then m.size - 1 else m.size
            theorem Std.DHashMap.size_erase_le {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
            (m.erase k).size m.size
            theorem Std.DHashMap.size_le_size_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
            m.size (m.erase k).size + 1
            @[simp]
            theorem Std.DHashMap.containsThenInsert_fst {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {k : α} {v : β k} :
            @[simp]
            theorem Std.DHashMap.containsThenInsert_snd {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {k : α} {v : β k} :
            @[simp]
            theorem Std.DHashMap.containsThenInsertIfNew_fst {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {k : α} {v : β k} :
            @[simp]
            theorem Std.DHashMap.containsThenInsertIfNew_snd {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {k : α} {v : β k} :
            @[simp]
            theorem Std.DHashMap.get?_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} {c : Nat} :
            @[simp]
            theorem Std.DHashMap.get?_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} :
            @[reducible, inline, deprecated Std.DHashMap.get?_empty (since := "2025-03-12")]
            abbrev Std.DHashMap.get?_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} :
            Equations
            Instances For
              theorem Std.DHashMap.get?_of_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} :
              m.isEmpty = truem.get? a = none
              theorem Std.DHashMap.get?_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a k : α} {v : β k} :
              (m.insert k v).get? a = if h : (k == a) = true then some (cast v) else m.get? a
              @[simp]
              theorem Std.DHashMap.get?_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {v : β k} :
              (m.insert k v).get? k = some v
              theorem Std.DHashMap.contains_eq_isSome_get? {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} :
              m.contains a = (m.get? a).isSome
              theorem Std.DHashMap.get?_eq_none_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} :
              m.contains a = falsem.get? a = none
              theorem Std.DHashMap.get?_eq_none {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} :
              ¬a mm.get? a = none
              theorem Std.DHashMap.get?_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} :
              (m.erase k).get? a = if (k == a) = true then none else m.get? a
              @[simp]
              theorem Std.DHashMap.get?_erase_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} :
              (m.erase k).get? k = none
              @[simp]
              theorem Std.DHashMap.Const.get?_emptyWithCapacity {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {a : α} {c : Nat} :
              @[simp]
              theorem Std.DHashMap.Const.get?_empty {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {a : α} :
              @[reducible, inline, deprecated Std.DHashMap.Const.get?_empty (since := "2025-03-12")]
              abbrev Std.DHashMap.Const.get?_emptyc {α : Type u_1} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type u_2} {a : α} :
              Equations
              Instances For
                theorem Std.DHashMap.Const.get?_of_isEmpty {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} :
                m.isEmpty = trueget? m a = none
                theorem Std.DHashMap.Const.get?_insert {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
                get? (m.insert k v) a = if (k == a) = true then some v else get? m a
                @[simp]
                theorem Std.DHashMap.Const.get?_insert_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
                get? (m.insert k v) k = some v
                theorem Std.DHashMap.Const.contains_eq_isSome_get? {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} :
                m.contains a = (get? m a).isSome
                theorem Std.DHashMap.Const.get?_eq_none_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} :
                m.contains a = falseget? m a = none
                theorem Std.DHashMap.Const.get?_eq_none {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} :
                ¬a mget? m a = none
                theorem Std.DHashMap.Const.get?_erase {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} :
                get? (m.erase k) a = if (k == a) = true then none else get? m a
                @[simp]
                theorem Std.DHashMap.Const.get?_erase_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} :
                get? (m.erase k) k = none
                theorem Std.DHashMap.Const.get?_eq_get? {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {a : α} :
                get? m a = m.get? a
                theorem Std.DHashMap.Const.get?_congr {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a b : α} (hab : (a == b) = true) :
                get? m a = get? m b
                theorem Std.DHashMap.get_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} {v : β k} {h₁ : a m.insert k v} :
                (m.insert k v).get a h₁ = if h₂ : (k == a) = true then cast v else m.get a
                @[simp]
                theorem Std.DHashMap.get_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {v : β k} :
                (m.insert k v).get k = v
                @[simp]
                theorem Std.DHashMap.get_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} {h' : a m.erase k} :
                (m.erase k).get a h' = m.get a
                theorem Std.DHashMap.get?_eq_some_get {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} {h : a m} :
                m.get? a = some (m.get a h)
                theorem Std.DHashMap.Const.get_insert {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} {h₁ : a m.insert k v} :
                get (m.insert k v) a h₁ = if h₂ : (k == a) = true then v else get m a
                @[simp]
                theorem Std.DHashMap.Const.get_insert_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
                get (m.insert k v) k = v
                @[simp]
                theorem Std.DHashMap.Const.get_erase {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} {h' : a m.erase k} :
                get (m.erase k) a h' = get m a
                theorem Std.DHashMap.Const.get?_eq_some_get {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} {h : a m} :
                get? m a = some (get m a h)
                theorem Std.DHashMap.Const.get_eq_get {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {a : α} {h : a m} :
                get m a h = m.get a h
                theorem Std.DHashMap.Const.get_congr {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a b : α} (hab : (a == b) = true) {h' : a m} :
                get m a h' = get m b
                @[simp]
                theorem Std.DHashMap.get!_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} [Inhabited (β a)] {c : Nat} :
                @[simp]
                theorem Std.DHashMap.get!_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                @[reducible, inline, deprecated Std.DHashMap.get!_empty (since := "2025-03-12")]
                abbrev Std.DHashMap.get!_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                Equations
                Instances For
                  theorem Std.DHashMap.get!_of_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                  theorem Std.DHashMap.get!_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} [Inhabited (β a)] {v : β k} :
                  (m.insert k v).get! a = if h : (k == a) = true then cast v else m.get! a
                  @[simp]
                  theorem Std.DHashMap.get!_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] {b : β a} :
                  (m.insert a b).get! a = b
                  theorem Std.DHashMap.get!_eq_default_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                  theorem Std.DHashMap.get!_eq_default {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                  ¬a mm.get! a = default
                  theorem Std.DHashMap.get!_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} [Inhabited (β a)] :
                  (m.erase k).get! a = if (k == a) = true then default else m.get! a
                  @[simp]
                  theorem Std.DHashMap.get!_erase_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} [Inhabited (β k)] :
                  theorem Std.DHashMap.get?_eq_some_get!_of_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                  m.contains a = truem.get? a = some (m.get! a)
                  theorem Std.DHashMap.get?_eq_some_get! {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                  a mm.get? a = some (m.get! a)
                  theorem Std.DHashMap.get!_eq_get!_get? {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                  m.get! a = (m.get? a).get!
                  theorem Std.DHashMap.get_eq_get! {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] {h : a m} :
                  m.get a h = m.get! a
                  @[simp]
                  theorem Std.DHashMap.Const.get!_emptyWithCapacity {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [Inhabited β] {a : α} {c : Nat} :
                  @[simp]
                  theorem Std.DHashMap.Const.get!_empty {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [Inhabited β] {a : α} :
                  @[reducible, inline, deprecated Std.DHashMap.Const.get!_empty (since := "2025-03-12")]
                  abbrev Std.DHashMap.Const.get!_emptyc {α : Type u_1} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type u_2} [Inhabited β] {a : α} :
                  Equations
                  Instances For
                    theorem Std.DHashMap.Const.get!_of_isEmpty {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
                    theorem Std.DHashMap.Const.get!_insert {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {k a : α} {v : β} :
                    get! (m.insert k v) a = if (k == a) = true then v else get! m a
                    @[simp]
                    theorem Std.DHashMap.Const.get!_insert_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {k : α} {v : β} :
                    get! (m.insert k v) k = v
                    theorem Std.DHashMap.Const.get!_eq_default_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
                    theorem Std.DHashMap.Const.get!_eq_default {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
                    ¬a mget! m a = default
                    theorem Std.DHashMap.Const.get!_erase {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {k a : α} :
                    get! (m.erase k) a = if (k == a) = true then default else get! m a
                    @[simp]
                    theorem Std.DHashMap.Const.get!_erase_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {k : α} :
                    theorem Std.DHashMap.Const.get?_eq_some_get!_of_contains {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
                    m.contains a = trueget? m a = some (get! m a)
                    theorem Std.DHashMap.Const.get?_eq_some_get! {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
                    a mget? m a = some (get! m a)
                    theorem Std.DHashMap.Const.get!_eq_get!_get? {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
                    get! m a = (get? m a).get!
                    theorem Std.DHashMap.Const.get_eq_get! {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} {h : a m} :
                    get m a h = get! m a
                    theorem Std.DHashMap.Const.get!_eq_get! {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] [Inhabited β] {a : α} :
                    get! m a = m.get! a
                    theorem Std.DHashMap.Const.get!_congr {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a b : α} (hab : (a == b) = true) :
                    get! m a = get! m b
                    @[simp]
                    theorem Std.DHashMap.getD_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} {fallback : β a} {c : Nat} :
                    (emptyWithCapacity c).getD a fallback = fallback
                    @[simp]
                    theorem Std.DHashMap.getD_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} {fallback : β a} :
                    .getD a fallback = fallback
                    @[reducible, inline, deprecated Std.DHashMap.getD_empty (since := "2025-03-12")]
                    abbrev Std.DHashMap.getD_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {a : α} {fallback : β a} :
                    .getD a fallback = fallback
                    Equations
                    Instances For
                      theorem Std.DHashMap.getD_of_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} {fallback : β a} :
                      m.isEmpty = truem.getD a fallback = fallback
                      theorem Std.DHashMap.getD_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} {fallback : β a} {v : β k} :
                      (m.insert k v).getD a fallback = if h : (k == a) = true then cast v else m.getD a fallback
                      @[simp]
                      theorem Std.DHashMap.getD_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {fallback v : β k} :
                      (m.insert k v).getD k fallback = v
                      theorem Std.DHashMap.getD_eq_fallback_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} {fallback : β a} :
                      m.contains a = falsem.getD a fallback = fallback
                      theorem Std.DHashMap.getD_eq_fallback {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} {fallback : β a} :
                      ¬a mm.getD a fallback = fallback
                      theorem Std.DHashMap.getD_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} {fallback : β a} :
                      (m.erase k).getD a fallback = if (k == a) = true then fallback else m.getD a fallback
                      @[simp]
                      theorem Std.DHashMap.getD_erase_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {fallback : β k} :
                      (m.erase k).getD k fallback = fallback
                      theorem Std.DHashMap.get?_eq_some_getD_of_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} {fallback : β a} :
                      m.contains a = truem.get? a = some (m.getD a fallback)
                      theorem Std.DHashMap.get?_eq_some_getD {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} {fallback : β a} :
                      a mm.get? a = some (m.getD a fallback)
                      theorem Std.DHashMap.getD_eq_getD_get? {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} {fallback : β a} :
                      m.getD a fallback = (m.get? a).getD fallback
                      theorem Std.DHashMap.get_eq_getD {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} {fallback : β a} {h : a m} :
                      m.get a h = m.getD a fallback
                      theorem Std.DHashMap.get!_eq_getD_default {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {a : α} [Inhabited (β a)] :
                      m.get! a = m.getD a default
                      @[simp]
                      theorem Std.DHashMap.Const.getD_emptyWithCapacity {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {a : α} {fallback : β} {c : Nat} :
                      getD (emptyWithCapacity c) a fallback = fallback
                      @[simp]
                      theorem Std.DHashMap.Const.getD_empty {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {a : α} {fallback : β} :
                      getD a fallback = fallback
                      @[reducible, inline, deprecated Std.DHashMap.Const.getD_empty (since := "2025-03-12")]
                      abbrev Std.DHashMap.Const.getD_emptyc {α : Type u_1} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type u_2} {a : α} {fallback : β} :
                      getD a fallback = fallback
                      Equations
                      Instances For
                        theorem Std.DHashMap.Const.getD_of_isEmpty {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
                        m.isEmpty = truegetD m a fallback = fallback
                        theorem Std.DHashMap.Const.getD_insert {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} {fallback v : β} :
                        getD (m.insert k v) a fallback = if (k == a) = true then v else getD m a fallback
                        @[simp]
                        theorem Std.DHashMap.Const.getD_insert_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {fallback v : β} :
                        getD (m.insert k v) k fallback = v
                        theorem Std.DHashMap.Const.getD_eq_fallback_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
                        m.contains a = falsegetD m a fallback = fallback
                        theorem Std.DHashMap.Const.getD_eq_fallback {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
                        ¬a mgetD m a fallback = fallback
                        theorem Std.DHashMap.Const.getD_erase {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} {fallback : β} :
                        getD (m.erase k) a fallback = if (k == a) = true then fallback else getD m a fallback
                        @[simp]
                        theorem Std.DHashMap.Const.getD_erase_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {fallback : β} :
                        getD (m.erase k) k fallback = fallback
                        theorem Std.DHashMap.Const.get?_eq_some_getD_of_contains {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
                        m.contains a = trueget? m a = some (getD m a fallback)
                        theorem Std.DHashMap.Const.get?_eq_some_getD {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
                        a mget? m a = some (getD m a fallback)
                        theorem Std.DHashMap.Const.getD_eq_getD_get? {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} :
                        getD m a fallback = (get? m a).getD fallback
                        theorem Std.DHashMap.Const.get_eq_getD {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a : α} {fallback : β} {h : a m} :
                        get m a h = getD m a fallback
                        theorem Std.DHashMap.Const.get!_eq_getD_default {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {a : α} :
                        get! m a = getD m a default
                        theorem Std.DHashMap.Const.getD_eq_getD {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {a : α} {fallback : β} :
                        getD m a fallback = m.getD a fallback
                        theorem Std.DHashMap.Const.getD_congr {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {a b : α} {fallback : β} (hab : (a == b) = true) :
                        getD m a fallback = getD m b fallback
                        @[simp]
                        theorem Std.DHashMap.getKey?_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} {c : Nat} :
                        @[simp]
                        theorem Std.DHashMap.getKey?_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} :
                        @[reducible, inline, deprecated Std.DHashMap.getKey?_empty (since := "2025-03-12")]
                        abbrev Std.DHashMap.getKey?_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} {a : α} :
                        Equations
                        Instances For
                          theorem Std.DHashMap.getKey?_of_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a : α} :
                          theorem Std.DHashMap.getKey?_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a k : α} {v : β k} :
                          (m.insert k v).getKey? a = if (k == a) = true then some k else m.getKey? a
                          @[simp]
                          theorem Std.DHashMap.getKey?_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
                          (m.insert k v).getKey? k = some k
                          theorem Std.DHashMap.contains_eq_isSome_getKey? {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a : α} :
                          theorem Std.DHashMap.getKey?_eq_none_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a : α} :
                          theorem Std.DHashMap.getKey?_eq_none {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a : α} :
                          ¬a mm.getKey? a = none
                          theorem Std.DHashMap.getKey?_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} :
                          (m.erase k).getKey? a = if (k == a) = true then none else m.getKey? a
                          @[simp]
                          theorem Std.DHashMap.getKey?_erase_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
                          theorem Std.DHashMap.getKey?_beq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
                          Option.all (fun (x : α) => x == k) (m.getKey? k) = true
                          theorem Std.DHashMap.getKey?_congr {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k k' : α} (h : (k == k') = true) :
                          m.getKey? k = m.getKey? k'
                          theorem Std.DHashMap.getKey?_eq_some_of_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} (h : m.contains k = true) :
                          m.getKey? k = some k
                          theorem Std.DHashMap.getKey?_eq_some {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} (h : k m) :
                          m.getKey? k = some k
                          theorem Std.DHashMap.getKey_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} {h₁ : a m.insert k v} :
                          (m.insert k v).getKey a h₁ = if h₂ : (k == a) = true then k else m.getKey a
                          @[simp]
                          theorem Std.DHashMap.getKey_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
                          (m.insert k v).getKey k = k
                          @[simp]
                          theorem Std.DHashMap.getKey_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {h' : a m.erase k} :
                          (m.erase k).getKey a h' = m.getKey a
                          theorem Std.DHashMap.getKey?_eq_some_getKey {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a : α} {h : a m} :
                          m.getKey? a = some (m.getKey a h)
                          theorem Std.DHashMap.getKey_beq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} (h : k m) :
                          (m.getKey k h == k) = true
                          theorem Std.DHashMap.getKey_congr {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k₁ k₂ : α} (h : (k₁ == k₂) = true) (h₁ : k₁ m) :
                          m.getKey k₁ h₁ = m.getKey k₂
                          theorem Std.DHashMap.getKey_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} (h : k m) :
                          m.getKey k h = k
                          @[simp]
                          theorem Std.DHashMap.getKey!_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [Inhabited α] {a : α} {c : Nat} :
                          @[simp]
                          theorem Std.DHashMap.getKey!_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [Inhabited α] {a : α} :
                          @[reducible, inline, deprecated Std.DHashMap.getKey!_empty (since := "2025-03-12")]
                          abbrev Std.DHashMap.getKey!_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} [Inhabited α] {a : α} :
                          Equations
                          Instances For
                            theorem Std.DHashMap.getKey!_of_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} :
                            theorem Std.DHashMap.getKey!_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k a : α} {v : β k} :
                            (m.insert k v).getKey! a = if (k == a) = true then k else m.getKey! a
                            @[simp]
                            theorem Std.DHashMap.getKey!_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} {b : β a} :
                            (m.insert a b).getKey! a = a
                            theorem Std.DHashMap.getKey!_eq_default_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} :
                            theorem Std.DHashMap.getKey!_eq_default {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} :
                            ¬a mm.getKey! a = default
                            theorem Std.DHashMap.getKey!_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k a : α} :
                            @[simp]
                            theorem Std.DHashMap.getKey!_erase_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} :
                            theorem Std.DHashMap.getKey?_eq_some_getKey!_of_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} :
                            m.contains a = truem.getKey? a = some (m.getKey! a)
                            theorem Std.DHashMap.getKey?_eq_some_getKey! {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} :
                            a mm.getKey? a = some (m.getKey! a)
                            theorem Std.DHashMap.getKey!_eq_get!_getKey? {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} :
                            m.getKey! a = (m.getKey? a).get!
                            theorem Std.DHashMap.getKey_eq_getKey! {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} {h : a m} :
                            m.getKey a h = m.getKey! a
                            theorem Std.DHashMap.getKey!_congr {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} (h : (k == k') = true) :
                            m.getKey! k = m.getKey! k'
                            theorem Std.DHashMap.getKey!_eq_of_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k : α} (h : m.contains k = true) :
                            m.getKey! k = k
                            theorem Std.DHashMap.getKey!_eq_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k : α} (h : k m) :
                            m.getKey! k = k
                            @[simp]
                            theorem Std.DHashMap.getKeyD_emptyWithCapacity {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {a fallback : α} {c : Nat} :
                            (emptyWithCapacity c).getKeyD a fallback = fallback
                            @[simp]
                            theorem Std.DHashMap.getKeyD_empty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {a fallback : α} :
                            .getKeyD a fallback = fallback
                            @[reducible, inline, deprecated Std.DHashMap.getKeyD_empty (since := "2025-03-12")]
                            abbrev Std.DHashMap.getKeyD_emptyc {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} {a fallback : α} :
                            .getKeyD a fallback = fallback
                            Equations
                            Instances For
                              theorem Std.DHashMap.getKeyD_of_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a fallback : α} :
                              m.isEmpty = truem.getKeyD a fallback = fallback
                              theorem Std.DHashMap.getKeyD_insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a fallback : α} {v : β k} :
                              (m.insert k v).getKeyD a fallback = if (k == a) = true then k else m.getKeyD a fallback
                              @[simp]
                              theorem Std.DHashMap.getKeyD_insert_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k fallback : α} {v : β k} :
                              (m.insert k v).getKeyD k fallback = k
                              theorem Std.DHashMap.getKeyD_eq_fallback_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a fallback : α} :
                              m.contains a = falsem.getKeyD a fallback = fallback
                              theorem Std.DHashMap.getKeyD_eq_fallback {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a fallback : α} :
                              ¬a mm.getKeyD a fallback = fallback
                              theorem Std.DHashMap.getKeyD_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a fallback : α} :
                              (m.erase k).getKeyD a fallback = if (k == a) = true then fallback else m.getKeyD a fallback
                              @[simp]
                              theorem Std.DHashMap.getKeyD_erase_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k fallback : α} :
                              (m.erase k).getKeyD k fallback = fallback
                              theorem Std.DHashMap.getKey?_eq_some_getKeyD_of_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a fallback : α} :
                              m.contains a = truem.getKey? a = some (m.getKeyD a fallback)
                              theorem Std.DHashMap.getKey?_eq_some_getKeyD {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a fallback : α} :
                              a mm.getKey? a = some (m.getKeyD a fallback)
                              theorem Std.DHashMap.getKeyD_eq_getD_getKey? {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a fallback : α} :
                              m.getKeyD a fallback = (m.getKey? a).getD fallback
                              theorem Std.DHashMap.getKey_eq_getKeyD {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {a fallback : α} {h : a m} :
                              m.getKey a h = m.getKeyD a fallback
                              theorem Std.DHashMap.getKey!_eq_getKeyD_default {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {a : α} :
                              theorem Std.DHashMap.getKeyD_congr {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k k' fallback : α} (h : (k == k') = true) :
                              m.getKeyD k fallback = m.getKeyD k' fallback
                              theorem Std.DHashMap.getKeyD_eq_of_contains {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k fallback : α} (h : m.contains k = true) :
                              m.getKeyD k fallback = k
                              theorem Std.DHashMap.getKeyD_eq_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k fallback : α} (h : k m) :
                              m.getKeyD k fallback = k
                              @[simp]
                              theorem Std.DHashMap.isEmpty_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
                              @[simp]
                              theorem Std.DHashMap.contains_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
                              (m.insertIfNew k v).contains a = (k == a || m.contains a)
                              @[simp]
                              theorem Std.DHashMap.mem_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
                              a m.insertIfNew k v (k == a) = true a m
                              theorem Std.DHashMap.contains_insertIfNew_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
                              theorem Std.DHashMap.mem_insertIfNew_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
                              theorem Std.DHashMap.contains_of_contains_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
                              (m.insertIfNew k v).contains a = true(k == a) = falsem.contains a = true
                              theorem Std.DHashMap.mem_of_mem_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
                              a m.insertIfNew k v(k == a) = falsea m
                              theorem Std.DHashMap.contains_of_contains_insertIfNew' {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
                              (m.insertIfNew k v).contains a = true¬((k == a) = true m.contains k = false) → m.contains a = true

                              This is a restatement of contains_of_contains_insertIfNew that is written to exactly match the proof obligation in the statement of get_insertIfNew.

                              theorem Std.DHashMap.mem_of_mem_insertIfNew' {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
                              a m.insertIfNew k v¬((k == a) = true ¬k m) → a m

                              This is a restatement of mem_of_mem_insertIfNew that is written to exactly match the proof obligation in the statement of get_insertIfNew.

                              theorem Std.DHashMap.size_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
                              (m.insertIfNew k v).size = if k m then m.size else m.size + 1
                              theorem Std.DHashMap.size_le_size_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
                              theorem Std.DHashMap.size_insertIfNew_le {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β k} :
                              (m.insertIfNew k v).size m.size + 1
                              theorem Std.DHashMap.get?_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} {v : β k} :
                              (m.insertIfNew k v).get? a = if h : (k == a) = true ¬k m then some (cast v) else m.get? a
                              theorem Std.DHashMap.get_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} {v : β k} {h₁ : a m.insertIfNew k v} :
                              (m.insertIfNew k v).get a h₁ = if h₂ : (k == a) = true ¬k m then cast v else m.get a
                              theorem Std.DHashMap.get!_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} [Inhabited (β a)] {v : β k} :
                              (m.insertIfNew k v).get! a = if h : (k == a) = true ¬k m then cast v else m.get! a
                              theorem Std.DHashMap.getD_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k a : α} {fallback : β a} {v : β k} :
                              (m.insertIfNew k v).getD a fallback = if h : (k == a) = true ¬k m then cast v else m.getD a fallback
                              theorem Std.DHashMap.Const.get?_insertIfNew {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} :
                              get? (m.insertIfNew k v) a = if (k == a) = true ¬k m then some v else get? m a
                              theorem Std.DHashMap.Const.get_insertIfNew {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β} {h₁ : a m.insertIfNew k v} :
                              get (m.insertIfNew k v) a h₁ = if h₂ : (k == a) = true ¬k m then v else get m a
                              theorem Std.DHashMap.Const.get!_insertIfNew {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {k a : α} {v : β} :
                              get! (m.insertIfNew k v) a = if (k == a) = true ¬k m then v else get! m a
                              theorem Std.DHashMap.Const.getD_insertIfNew {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k a : α} {fallback v : β} :
                              getD (m.insertIfNew k v) a fallback = if (k == a) = true ¬k m then v else getD m a fallback
                              theorem Std.DHashMap.getKey?_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} :
                              (m.insertIfNew k v).getKey? a = if (k == a) = true ¬k m then some k else m.getKey? a
                              theorem Std.DHashMap.getKey_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a : α} {v : β k} {h₁ : a m.insertIfNew k v} :
                              (m.insertIfNew k v).getKey a h₁ = if h₂ : (k == a) = true ¬k m then k else m.getKey a
                              theorem Std.DHashMap.getKey!_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k a : α} {v : β k} :
                              (m.insertIfNew k v).getKey! a = if (k == a) = true ¬k m then k else m.getKey! a
                              theorem Std.DHashMap.getKeyD_insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k a fallback : α} {v : β k} :
                              (m.insertIfNew k v).getKeyD a fallback = if (k == a) = true ¬k m then k else m.getKeyD a fallback
                              @[simp]
                              theorem Std.DHashMap.getThenInsertIfNew?_fst {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {v : β k} :
                              @[simp]
                              theorem Std.DHashMap.getThenInsertIfNew?_snd {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {v : β k} :
                              @[simp]
                              theorem Std.DHashMap.Const.getThenInsertIfNew?_fst {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} {k : α} {v : β} :
                              @[simp]
                              theorem Std.DHashMap.Const.getThenInsertIfNew?_snd {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} {k : α} {v : β} :
                              @[simp]
                              theorem Std.DHashMap.length_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              @[simp]
                              theorem Std.DHashMap.isEmpty_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              @[simp]
                              theorem Std.DHashMap.contains_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
                              @[simp]
                              theorem Std.DHashMap.mem_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} :
                              k m.keys k m
                              theorem Std.DHashMap.distinct_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              List.Pairwise (fun (a b : α) => (a == b) = false) m.keys
                              @[simp]
                              theorem Std.DHashMap.map_fst_toList_eq_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              @[simp, deprecated Std.DHashMap.map_fst_toList_eq_keys (since := "2025-02-28")]
                              theorem Std.DHashMap.map_sigma_fst_toList_eq_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              @[simp]
                              theorem Std.DHashMap.length_toList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              @[simp]
                              theorem Std.DHashMap.isEmpty_toList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              @[simp]
                              theorem Std.DHashMap.mem_toList_iff_get?_eq_some {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {v : β k} :
                              k, v m.toList m.get? k = some v
                              theorem Std.DHashMap.find?_toList_eq_some_iff_get?_eq_some {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {v : β k} :
                              List.find? (fun (x : (a : α) × β a) => x.fst == k) m.toList = some k, v m.get? k = some v
                              theorem Std.DHashMap.find?_toList_eq_none_iff_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
                              List.find? (fun (x : (a : α) × β a) => x.fst == k) m.toList = none m.contains k = false
                              @[simp]
                              theorem Std.DHashMap.find?_toList_eq_none_iff_not_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} :
                              List.find? (fun (x : (a : α) × β a) => x.fst == k) m.toList = none ¬k m
                              theorem Std.DHashMap.distinct_keys_toList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) m.toList
                              @[simp]
                              theorem Std.DHashMap.Const.map_fst_toList_eq_keys {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] :
                              @[simp, deprecated Std.DHashMap.Const.map_fst_toList_eq_keys (since := "2025-02-28")]
                              theorem Std.DHashMap.Const.map_prod_fst_toList_eq_keys {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] :
                              @[simp]
                              theorem Std.DHashMap.Const.length_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] :
                              @[simp]
                              theorem Std.DHashMap.Const.isEmpty_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] :
                              @[simp]
                              theorem Std.DHashMap.Const.mem_toList_iff_get?_eq_some {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {k : α} {v : β} :
                              (k, v) toList m get? m k = some v
                              @[simp]
                              theorem Std.DHashMap.Const.mem_toList_iff_getKey?_eq_some_and_get?_eq_some {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
                              (k, v) toList m m.getKey? k = some k get? m k = some v
                              theorem Std.DHashMap.Const.get?_eq_some_iff_exists_beq_and_mem_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {v : β} :
                              get? m k = some v (k' : α), (k == k') = true (k', v) toList m
                              theorem Std.DHashMap.Const.find?_toList_eq_some_iff_getKey?_eq_some_and_get?_eq_some {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {v : β} :
                              List.find? (fun (a : α × β) => a.fst == k) (toList m) = some (k', v) m.getKey? k = some k' get? m k = some v
                              theorem Std.DHashMap.Const.find?_toList_eq_none_iff_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} :
                              List.find? (fun (x : α × β) => x.fst == k) (toList m) = none m.contains k = false
                              @[simp]
                              theorem Std.DHashMap.Const.find?_toList_eq_none_iff_not_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} :
                              List.find? (fun (x : α × β) => x.fst == k) (toList m) = none ¬k m
                              theorem Std.DHashMap.Const.distinct_keys_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] :
                              List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) (toList m)
                              theorem Std.DHashMap.foldM_eq_foldlM_toList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {δ : Type w} {m' : Type w → Type w} [Monad m'] [LawfulMonad m'] {f : δ(a : α) → β am' δ} {init : δ} :
                              foldM f init m = List.foldlM (fun (a : δ) (b : (a : α) × β a) => f a b.fst b.snd) init m.toList
                              theorem Std.DHashMap.fold_eq_foldl_toList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {δ : Type w} {f : δ(a : α) → β aδ} {init : δ} :
                              fold f init m = List.foldl (fun (a : δ) (b : (a : α) × β a) => f a b.fst b.snd) init m.toList
                              @[simp]
                              theorem Std.DHashMap.forM_eq_forM {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {m' : Type w → Type w} [Monad m'] [LawfulMonad m'] {f : (a : α) → β am' PUnit} :
                              forM f m = ForM.forM m fun (a : (a : α) × β a) => f a.fst a.snd
                              theorem Std.DHashMap.forM_eq_forM_toList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {m' : Type w → Type w} [Monad m'] [LawfulMonad m'] {f : (a : α) × β am' PUnit} :
                              @[simp]
                              theorem Std.DHashMap.forIn_eq_forIn {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {δ : Type w} {m' : Type w → Type w} [Monad m'] [LawfulMonad m'] {f : (a : α) → β aδm' (ForInStep δ)} {init : δ} :
                              forIn f init m = ForIn.forIn m init fun (a : (a : α) × β a) (b : δ) => f a.fst a.snd b
                              theorem Std.DHashMap.forIn_eq_forIn_toList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {δ : Type w} {m' : Type w → Type w} [Monad m'] [LawfulMonad m'] {f : (a : α) × β aδm' (ForInStep δ)} {init : δ} :
                              ForIn.forIn m init f = ForIn.forIn m.toList init f
                              theorem Std.DHashMap.foldM_eq_foldlM_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {δ : Type w} {m' : Type w → Type w} [Monad m'] [LawfulMonad m'] {f : δαm' δ} {init : δ} :
                              foldM (fun (d : δ) (a : α) (x : β a) => f d a) init m = List.foldlM f init m.keys
                              theorem Std.DHashMap.fold_eq_foldl_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {δ : Type w} {f : δαδ} {init : δ} :
                              fold (fun (d : δ) (a : α) (x : β a) => f d a) init m = List.foldl f init m.keys
                              theorem Std.DHashMap.forM_eq_forM_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {m' : Type w → Type w} [Monad m'] [LawfulMonad m'] {f : αm' PUnit} :
                              (ForM.forM m fun (a : (a : α) × β a) => f a.fst) = m.keys.forM f
                              theorem Std.DHashMap.forIn_eq_forIn_keys {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {δ : Type w} {m' : Type w → Type w} [Monad m'] [LawfulMonad m'] {f : αδm' (ForInStep δ)} {init : δ} :
                              (ForIn.forIn m init fun (a : (a : α) × β a) (d : δ) => f a.fst d) = ForIn.forIn m.keys init f
                              theorem Std.DHashMap.Const.foldM_eq_foldlM_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {δ : Type w} {m' : Type w → Type w} {β : Type v} {m : DHashMap α fun (x : α) => β} [Monad m'] [LawfulMonad m'] {f : δαβm' δ} {init : δ} :
                              foldM f init m = List.foldlM (fun (a : δ) (b : α × β) => f a b.fst b.snd) init (toList m)
                              theorem Std.DHashMap.Const.fold_eq_foldl_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {δ : Type w} {β : Type v} {m : DHashMap α fun (x : α) => β} {f : δαβδ} {init : δ} :
                              fold f init m = List.foldl (fun (a : δ) (b : α × β) => f a b.fst b.snd) init (toList m)
                              theorem Std.DHashMap.Const.forM_eq_forMUncurried {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m' : Type w → Type w} {β : Type v} {m : DHashMap α fun (x : α) => β} [Monad m'] [LawfulMonad m'] {f : αβm' PUnit} :
                              forM f m = forMUncurried (fun (a : α × β) => f a.fst a.snd) m
                              theorem Std.DHashMap.Const.forMUncurried_eq_forM_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m' : Type w → Type w} {β : Type v} {m : DHashMap α fun (x : α) => β} [Monad m'] [LawfulMonad m'] {f : α × βm' PUnit} :
                              @[deprecated Std.DHashMap.Const.forMUncurried_eq_forM_toList (since := "2025-03-02")]
                              theorem Std.DHashMap.Const.forM_eq_forM_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m' : Type w → Type w} {β : Type v} {m : DHashMap α fun (x : α) => β} [Monad m'] [LawfulMonad m'] {f : αβm' PUnit} :
                              forM f m = (toList m).forM fun (a : α × β) => f a.fst a.snd

                              Deprecated, use forMUncurried_eq_forM_toList together with forM_eq_forMUncurried instead.

                              theorem Std.DHashMap.Const.forIn_eq_forInUncurried {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {δ : Type w} {m' : Type w → Type w} {β : Type v} {m : DHashMap α fun (x : α) => β} [Monad m'] [LawfulMonad m'] {f : αβδm' (ForInStep δ)} {init : δ} :
                              forIn f init m = forInUncurried (fun (a : α × β) (b : δ) => f a.fst a.snd b) init m
                              theorem Std.DHashMap.Const.forInUncurried_eq_forIn_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {δ : Type w} {m' : Type w → Type w} {β : Type v} {m : DHashMap α fun (x : α) => β} [Monad m'] [LawfulMonad m'] {f : α × βδm' (ForInStep δ)} {init : δ} :
                              forInUncurried f init m = ForIn.forIn (toList m) init f
                              @[deprecated Std.DHashMap.Const.forInUncurried_eq_forIn_toList (since := "2025-03-02")]
                              theorem Std.DHashMap.Const.forIn_eq_forIn_toList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {δ : Type w} {m' : Type w → Type w} {β : Type v} {m : DHashMap α fun (x : α) => β} [Monad m'] [LawfulMonad m'] {f : α × βδm' (ForInStep δ)} {init : δ} :
                              forInUncurried f init m = ForIn.forIn (toList m) init f

                              Deprecated, use forInUncurried_eq_forIn_toList together with forIn_eq_forInUncurried instead.

                              @[deprecated Std.DHashMap.foldM_eq_foldlM_keys (since := "2025-02-28")]
                              theorem Std.DHashMap.Const.foldM_eq_foldlM_keys {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {δ : Type w} {m' : Type w → Type w} {m : DHashMap α fun (x : α) => Unit} [Monad m'] [LawfulMonad m'] {f : δαm' δ} {init : δ} :
                              foldM (fun (d : δ) (a : α) (x : Unit) => f d a) init m = List.foldlM f init m.keys
                              @[deprecated Std.DHashMap.fold_eq_foldl_keys (since := "2025-02-28")]
                              theorem Std.DHashMap.Const.fold_eq_foldl_keys {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {δ : Type w} {m : DHashMap α fun (x : α) => Unit} {f : δαδ} {init : δ} :
                              fold (fun (d : δ) (a : α) (x : Unit) => f d a) init m = List.foldl f init m.keys
                              @[deprecated Std.DHashMap.forM_eq_forM_keys (since := "2025-02-28")]
                              theorem Std.DHashMap.Const.forM_eq_forM_keys {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m' : Type w → Type w} {m : DHashMap α fun (x : α) => Unit} [Monad m'] [LawfulMonad m'] {f : αm' PUnit} :
                              forM (fun (a : α) (x : Unit) => f a) m = m.keys.forM f
                              @[deprecated Std.DHashMap.forIn_eq_forIn_keys (since := "2025-02-28")]
                              theorem Std.DHashMap.Const.forIn_eq_forIn_keys {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {δ : Type w} {m' : Type w → Type w} {m : DHashMap α fun (x : α) => Unit} [Monad m'] [LawfulMonad m'] {f : αδm' (ForInStep δ)} {init : δ} :
                              forIn (fun (a : α) (x : Unit) (d : δ) => f a d) init m = ForIn.forIn m.keys init f
                              @[simp]
                              theorem Std.DHashMap.insertMany_nil {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} :
                              @[simp]
                              theorem Std.DHashMap.insertMany_list_singleton {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {k : α} {v : β k} :
                              m.insertMany [k, v] = m.insert k v
                              theorem Std.DHashMap.insertMany_cons {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} {l : List ((a : α) × β a)} {k : α} {v : β k} :
                              m.insertMany (k, v :: l) = (m.insert k v).insertMany l
                              @[simp]
                              theorem Std.DHashMap.contains_insertMany_list {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.mem_insertMany_list {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} :
                              theorem Std.DHashMap.mem_of_mem_insertMany_list {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} (mem : k m.insertMany l) (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              k m
                              theorem Std.DHashMap.get?_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              (m.insertMany l).get? k = m.get? k
                              theorem Std.DHashMap.get?_insertMany_list_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
                              (m.insertMany l).get? k' = some (cast v)
                              theorem Std.DHashMap.get_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) {h : k m.insertMany l} :
                              (m.insertMany l).get k h = m.get k
                              theorem Std.DHashMap.get_insertMany_list_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) {h : k' m.insertMany l} :
                              (m.insertMany l).get k' h = cast v
                              theorem Std.DHashMap.get!_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} [Inhabited (β k)] (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              (m.insertMany l).get! k = m.get! k
                              theorem Std.DHashMap.get!_insertMany_list_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} [Inhabited (β k')] (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
                              (m.insertMany l).get! k' = cast v
                              theorem Std.DHashMap.getD_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} {fallback : β k} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              (m.insertMany l).getD k fallback = m.getD k fallback
                              theorem Std.DHashMap.getD_insertMany_list_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} {fallback : β k'} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
                              (m.insertMany l).getD k' fallback = cast v
                              theorem Std.DHashMap.getKey?_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              theorem Std.DHashMap.getKey?_insertMany_list_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
                              theorem Std.DHashMap.getKey_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) {h : k m.insertMany l} :
                              (m.insertMany l).getKey k h = m.getKey k
                              theorem Std.DHashMap.getKey_insertMany_list_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) {h : k' m.insertMany l} :
                              (m.insertMany l).getKey k' h = k
                              theorem Std.DHashMap.getKey!_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List ((a : α) × β a)} {k : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              theorem Std.DHashMap.getKey!_insertMany_list_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
                              (m.insertMany l).getKey! k' = k
                              theorem Std.DHashMap.getKeyD_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k fallback : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              (m.insertMany l).getKeyD k fallback = m.getKeyD k fallback
                              theorem Std.DHashMap.getKeyD_insertMany_list_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
                              (m.insertMany l).getKeyD k' fallback = k
                              theorem Std.DHashMap.size_insertMany_list {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) :
                              (∀ (a : α), a m(List.map Sigma.fst l).contains a = false)(m.insertMany l).size = m.size + l.length
                              theorem Std.DHashMap.size_le_size_insertMany_list {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} :
                              theorem Std.DHashMap.size_insertMany_list_le {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} :
                              @[simp]
                              theorem Std.DHashMap.isEmpty_insertMany_list {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} :
                              @[simp]
                              theorem Std.DHashMap.Const.insertMany_nil {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} :
                              @[simp]
                              theorem Std.DHashMap.Const.insertMany_list_singleton {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} {k : α} {v : β} :
                              theorem Std.DHashMap.Const.insertMany_cons {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} {l : List (α × β)} {k : α} {v : β} :
                              insertMany m ((k, v) :: l) = insertMany (m.insert k v) l
                              @[simp]
                              theorem Std.DHashMap.Const.contains_insertMany_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.Const.mem_insertMany_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} :
                              theorem Std.DHashMap.Const.mem_of_mem_insertMany_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} (mem : k insertMany m l) (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              k m
                              theorem Std.DHashMap.Const.getKey?_insertMany_list_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              theorem Std.DHashMap.Const.getKey?_insertMany_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
                              theorem Std.DHashMap.Const.getKey_insertMany_list_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) {h : k insertMany m l} :
                              (insertMany m l).getKey k h = m.getKey k
                              theorem Std.DHashMap.Const.getKey_insertMany_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) {h : k' insertMany m l} :
                              (insertMany m l).getKey k' h = k
                              theorem Std.DHashMap.Const.getKey!_insertMany_list_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              theorem Std.DHashMap.Const.getKey!_insertMany_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
                              (insertMany m l).getKey! k' = k
                              theorem Std.DHashMap.Const.getKeyD_insertMany_list_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k fallback : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              (insertMany m l).getKeyD k fallback = m.getKeyD k fallback
                              theorem Std.DHashMap.Const.getKeyD_insertMany_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
                              (insertMany m l).getKeyD k' fallback = k
                              theorem Std.DHashMap.Const.size_insertMany_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) :
                              (∀ (a : α), a m(List.map Prod.fst l).contains a = false)(insertMany m l).size = m.size + l.length
                              theorem Std.DHashMap.Const.size_le_size_insertMany_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} :
                              theorem Std.DHashMap.Const.size_insertMany_list_le {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} :
                              @[simp]
                              theorem Std.DHashMap.Const.isEmpty_insertMany_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} :
                              theorem Std.DHashMap.Const.get?_insertMany_list_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              get? (insertMany m l) k = get? m k
                              theorem Std.DHashMap.Const.get?_insertMany_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
                              get? (insertMany m l) k' = some v
                              theorem Std.DHashMap.Const.get_insertMany_list_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) {h : k insertMany m l} :
                              get (insertMany m l) k h = get m k
                              theorem Std.DHashMap.Const.get_insertMany_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) {h : k' insertMany m l} :
                              get (insertMany m l) k' h = v
                              theorem Std.DHashMap.Const.get!_insertMany_list_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              get! (insertMany m l) k = get! m k
                              theorem Std.DHashMap.Const.get!_insertMany_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
                              get! (insertMany m l) k' = v
                              theorem Std.DHashMap.Const.getD_insertMany_list_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} {fallback : β} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              getD (insertMany m l) k fallback = getD m k fallback
                              theorem Std.DHashMap.Const.getD_insertMany_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v fallback : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
                              getD (insertMany m l) k' fallback = v
                              @[simp]
                              theorem Std.DHashMap.Const.insertManyIfNewUnit_nil {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} :
                              @[simp]
                              theorem Std.DHashMap.Const.insertManyIfNewUnit_list_singleton {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} {k : α} :
                              theorem Std.DHashMap.Const.insertManyIfNewUnit_cons {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} {l : List α} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.Const.contains_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.Const.mem_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} :
                              theorem Std.DHashMap.Const.mem_of_mem_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} (contains_eq_false : l.contains k = false) :
                              theorem Std.DHashMap.Const.getKey?_insertManyIfNewUnit_list_of_not_mem_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} (not_mem : ¬k m) (contains_eq_false : l.contains k = false) :
                              theorem Std.DHashMap.Const.getKey?_insertManyIfNewUnit_list_of_not_mem_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (not_mem : ¬k m) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
                              theorem Std.DHashMap.Const.getKey?_insertManyIfNewUnit_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} (h' : k m) :
                              theorem Std.DHashMap.Const.getKey_insertManyIfNewUnit_list_of_not_mem_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (not_mem : ¬k m) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) {h : k' insertManyIfNewUnit m l} :
                              theorem Std.DHashMap.Const.getKey_insertManyIfNewUnit_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} (mem : k m) {h : k insertManyIfNewUnit m l} :
                              theorem Std.DHashMap.Const.getKey!_insertManyIfNewUnit_list_of_not_mem_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List α} {k : α} (not_mem : ¬k m) (contains_eq_false : l.contains k = false) :
                              theorem Std.DHashMap.Const.getKey!_insertManyIfNewUnit_list_of_not_mem_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (not_mem : ¬k m) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
                              theorem Std.DHashMap.Const.getKey!_insertManyIfNewUnit_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List α} {k : α} (mem : k m) :
                              theorem Std.DHashMap.Const.getKeyD_insertManyIfNewUnit_list_of_not_mem_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k fallback : α} (not_mem : ¬k m) (contains_eq_false : l.contains k = false) :
                              (insertManyIfNewUnit m l).getKeyD k fallback = fallback
                              theorem Std.DHashMap.Const.getKeyD_insertManyIfNewUnit_list_of_not_mem_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k k' fallback : α} (k_beq : (k == k') = true) (not_mem : ¬k m) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
                              (insertManyIfNewUnit m l).getKeyD k' fallback = k
                              theorem Std.DHashMap.Const.getKeyD_insertManyIfNewUnit_list_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k fallback : α} (mem : k m) :
                              (insertManyIfNewUnit m l).getKeyD k fallback = m.getKeyD k fallback
                              theorem Std.DHashMap.Const.size_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) :
                              (∀ (a : α), a ml.contains a = false)(insertManyIfNewUnit m l).size = m.size + l.length
                              theorem Std.DHashMap.Const.size_le_size_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} :
                              theorem Std.DHashMap.Const.size_insertManyIfNewUnit_list_le {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} :
                              @[simp]
                              theorem Std.DHashMap.Const.isEmpty_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} :
                              theorem Std.DHashMap.Const.get?_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} :
                              theorem Std.DHashMap.Const.get_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} {l : List α} {k : α} {h : k insertManyIfNewUnit m l} :
                              theorem Std.DHashMap.Const.get!_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} {l : List α} {k : α} :
                              theorem Std.DHashMap.Const.getD_insertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α fun (x : α) => Unit} {l : List α} {k : α} {fallback : Unit} :
                              getD (insertManyIfNewUnit m l) k fallback = ()
                              @[simp]
                              theorem Std.DHashMap.ofList_nil {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} :
                              @[simp]
                              theorem Std.DHashMap.ofList_singleton {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {k : α} {v : β k} :
                              ofList [k, v] = .insert k v
                              theorem Std.DHashMap.ofList_cons {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {k : α} {v : β k} {tl : List ((a : α) × β a)} :
                              ofList (k, v :: tl) = (.insert k v).insertMany tl
                              @[simp]
                              theorem Std.DHashMap.contains_ofList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.mem_ofList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} :
                              theorem Std.DHashMap.get?_ofList_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              theorem Std.DHashMap.get?_ofList_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
                              (ofList l).get? k' = some (cast v)
                              theorem Std.DHashMap.get_ofList_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) {h : k' ofList l} :
                              (ofList l).get k' h = cast v
                              theorem Std.DHashMap.get!_ofList_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} [Inhabited (β k)] (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              theorem Std.DHashMap.get!_ofList_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} [Inhabited (β k')] (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
                              (ofList l).get! k' = cast v
                              theorem Std.DHashMap.getD_ofList_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} {fallback : β k} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              (ofList l).getD k fallback = fallback
                              theorem Std.DHashMap.getD_ofList_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} {fallback : β k'} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
                              (ofList l).getD k' fallback = cast v
                              theorem Std.DHashMap.getKey?_ofList_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              theorem Std.DHashMap.getKey?_ofList_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
                              (ofList l).getKey? k' = some k
                              theorem Std.DHashMap.getKey_ofList_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) {h : k' ofList l} :
                              (ofList l).getKey k' h = k
                              theorem Std.DHashMap.getKey!_ofList_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List ((a : α) × β a)} {k : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              theorem Std.DHashMap.getKey!_ofList_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
                              (ofList l).getKey! k' = k
                              theorem Std.DHashMap.getKeyD_ofList_of_contains_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k fallback : α} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
                              (ofList l).getKeyD k fallback = fallback
                              theorem Std.DHashMap.getKeyD_ofList_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
                              (ofList l).getKeyD k' fallback = k
                              theorem Std.DHashMap.size_ofList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) :
                              theorem Std.DHashMap.size_ofList_le {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} :
                              @[simp]
                              theorem Std.DHashMap.isEmpty_ofList {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} :
                              @[simp]
                              theorem Std.DHashMap.Const.ofList_nil {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} :
                              @[simp]
                              theorem Std.DHashMap.Const.ofList_singleton {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {k : α} {v : β} :
                              theorem Std.DHashMap.Const.ofList_cons {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {k : α} {v : β} {tl : List (α × β)} :
                              ofList ((k, v) :: tl) = insertMany (.insert k v) tl
                              @[simp]
                              theorem Std.DHashMap.Const.contains_ofList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.Const.mem_ofList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} :
                              theorem Std.DHashMap.Const.get?_ofList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [LawfulBEq α] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              theorem Std.DHashMap.Const.get?_ofList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [LawfulBEq α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
                              get? (ofList l) k' = some v
                              theorem Std.DHashMap.Const.get_ofList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [LawfulBEq α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) {h : k' ofList l} :
                              get (ofList l) k' h = v
                              theorem Std.DHashMap.Const.get!_ofList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [LawfulBEq α] {l : List (α × β)} {k : α} [Inhabited β] (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              theorem Std.DHashMap.Const.get!_ofList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [LawfulBEq α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} [Inhabited β] (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
                              get! (ofList l) k' = v
                              theorem Std.DHashMap.Const.getD_ofList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [LawfulBEq α] {l : List (α × β)} {k : α} {fallback : β} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              getD (ofList l) k fallback = fallback
                              theorem Std.DHashMap.Const.getD_ofList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [LawfulBEq α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v fallback : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
                              getD (ofList l) k' fallback = v
                              theorem Std.DHashMap.Const.getKey?_ofList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              theorem Std.DHashMap.Const.getKey?_ofList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
                              (ofList l).getKey? k' = some k
                              theorem Std.DHashMap.Const.getKey_ofList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) {h : k' ofList l} :
                              (ofList l).getKey k' h = k
                              theorem Std.DHashMap.Const.getKey!_ofList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List (α × β)} {k : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              theorem Std.DHashMap.Const.getKey!_ofList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
                              (ofList l).getKey! k' = k
                              theorem Std.DHashMap.Const.getKeyD_ofList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k fallback : α} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
                              (ofList l).getKeyD k fallback = fallback
                              theorem Std.DHashMap.Const.getKeyD_ofList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
                              (ofList l).getKeyD k' fallback = k
                              theorem Std.DHashMap.Const.size_ofList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) :
                              theorem Std.DHashMap.Const.size_ofList_le {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} :
                              @[simp]
                              theorem Std.DHashMap.Const.isEmpty_ofList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} :
                              @[simp]
                              theorem Std.DHashMap.Const.unitOfList_nil {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} :
                              @[simp]
                              theorem Std.DHashMap.Const.unitOfList_singleton {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {k : α} :
                              theorem Std.DHashMap.Const.unitOfList_cons {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {hd : α} {tl : List α} :
                              @[simp]
                              theorem Std.DHashMap.Const.contains_unitOfList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.Const.mem_unitOfList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} :
                              theorem Std.DHashMap.Const.getKey?_unitOfList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} (contains_eq_false : l.contains k = false) :
                              theorem Std.DHashMap.Const.getKey?_unitOfList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
                              theorem Std.DHashMap.Const.getKey_unitOfList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) {h : k' unitOfList l} :
                              (unitOfList l).getKey k' h = k
                              theorem Std.DHashMap.Const.getKey!_unitOfList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List α} {k : α} (contains_eq_false : l.contains k = false) :
                              theorem Std.DHashMap.Const.getKey!_unitOfList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
                              theorem Std.DHashMap.Const.getKeyD_unitOfList_of_contains_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} {k fallback : α} (contains_eq_false : l.contains k = false) :
                              (unitOfList l).getKeyD k fallback = fallback
                              theorem Std.DHashMap.Const.getKeyD_unitOfList_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
                              (unitOfList l).getKeyD k' fallback = k
                              theorem Std.DHashMap.Const.size_unitOfList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) :
                              theorem Std.DHashMap.Const.size_unitOfList_le {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} :
                              @[simp]
                              theorem Std.DHashMap.Const.isEmpty_unitOfList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} :
                              @[simp]
                              theorem Std.DHashMap.Const.get?_unitOfList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {l : List α} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.Const.get_unitOfList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {l : List α} {k : α} {h : k unitOfList l} :
                              get (unitOfList l) k h = ()
                              @[simp]
                              theorem Std.DHashMap.Const.get!_unitOfList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {l : List α} {k : α} :
                              @[simp]
                              theorem Std.DHashMap.Const.getD_unitOfList {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {l : List α} {k : α} {fallback : Unit} :
                              getD (unitOfList l) k fallback = ()
                              theorem Std.DHashMap.isEmpty_alter_eq_isEmpty_erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).isEmpty = ((m.erase k).isEmpty && (f (m.get? k)).isNone)
                              @[simp]
                              theorem Std.DHashMap.isEmpty_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).isEmpty = ((m.isEmpty || m.size == 1 && m.contains k) && (f (m.get? k)).isNone)
                              theorem Std.DHashMap.contains_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).contains k' = if (k == k') = true then (f (m.get? k)).isSome else m.contains k'
                              theorem Std.DHashMap.mem_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : Option (β k)Option (β k)} :
                              k' m.alter k f if (k == k') = true then (f (m.get? k)).isSome = true else k' m
                              theorem Std.DHashMap.mem_alter_of_beq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : Option (β k)Option (β k)} (h : (k == k') = true) :
                              k' m.alter k f (f (m.get? k)).isSome = true
                              @[simp]
                              theorem Std.DHashMap.contains_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).contains k = (f (m.get? k)).isSome
                              @[simp]
                              theorem Std.DHashMap.mem_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              k m.alter k f (f (m.get? k)).isSome = true
                              theorem Std.DHashMap.contains_alter_of_beq_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : Option (β k)Option (β k)} (h : (k == k') = false) :
                              (m.alter k f).contains k' = m.contains k'
                              theorem Std.DHashMap.mem_alter_of_beq_eq_false {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : Option (β k)Option (β k)} (h : (k == k') = false) :
                              k' m.alter k f k' m
                              theorem Std.DHashMap.size_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).size = if k m (f (m.get? k)).isNone = true then m.size - 1 else if ¬k m (f (m.get? k)).isSome = true then m.size + 1 else m.size
                              theorem Std.DHashMap.size_alter_eq_add_one {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} (h : ¬k m) (h' : (f (m.get? k)).isSome = true) :
                              (m.alter k f).size = m.size + 1
                              theorem Std.DHashMap.size_alter_eq_sub_one {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} (h : k m) (h' : (f (m.get? k)).isNone = true) :
                              (m.alter k f).size = m.size - 1
                              theorem Std.DHashMap.size_alter_eq_self_of_not_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} (h : ¬k m) (h' : (f (m.get? k)).isNone = true) :
                              (m.alter k f).size = m.size
                              theorem Std.DHashMap.size_alter_eq_self_of_mem {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} (h : k m) (h' : (f (m.get? k)).isSome = true) :
                              (m.alter k f).size = m.size
                              theorem Std.DHashMap.size_alter_le_size {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).size m.size + 1
                              theorem Std.DHashMap.size_le_size_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              m.size - 1 (m.alter k f).size
                              theorem Std.DHashMap.get?_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).get? k' = if h : (k == k') = true then cast (f (m.get? k)) else m.get? k'
                              @[simp]
                              theorem Std.DHashMap.get?_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).get? k = f (m.get? k)
                              theorem Std.DHashMap.get_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : Option (β k)Option (β k)} {h : k' m.alter k f} :
                              (m.alter k f).get k' h = if heq : (k == k') = true then cast ((f (m.get? k)).get ) else m.get k'
                              @[simp]
                              theorem Std.DHashMap.get_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} {h : k m.alter k f} :
                              (m.alter k f).get k h = (f (m.get? k)).get
                              theorem Std.DHashMap.get!_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} [hi : Inhabited (β k')] {f : Option (β k)Option (β k)} :
                              (m.alter k f).get! k' = if heq : (k == k') = true then (Option.map (cast ) (f (m.get? k))).get! else m.get! k'
                              @[simp]
                              theorem Std.DHashMap.get!_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} [Inhabited (β k)] {f : Option (β k)Option (β k)} :
                              (m.alter k f).get! k = (f (m.get? k)).get!
                              theorem Std.DHashMap.getD_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {fallback : β k'} {f : Option (β k)Option (β k)} :
                              (m.alter k f).getD k' fallback = if heq : (k == k') = true then (Option.map (cast ) (f (m.get? k))).getD fallback else m.getD k' fallback
                              @[simp]
                              theorem Std.DHashMap.getD_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {fallback : β k} {f : Option (β k)Option (β k)} :
                              (m.alter k f).getD k fallback = (f (m.get? k)).getD fallback
                              theorem Std.DHashMap.getKey?_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).getKey? k' = if (k == k') = true then if (f (m.get? k)).isSome = true then some k else none else m.getKey? k'
                              theorem Std.DHashMap.getKey?_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).getKey? k = if (f (m.get? k)).isSome = true then some k else none
                              theorem Std.DHashMap.getKey!_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k k' : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).getKey! k' = if (k == k') = true then if (f (m.get? k)).isSome = true then k else default else m.getKey! k'
                              theorem Std.DHashMap.getKey!_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).getKey! k = if (f (m.get? k)).isSome = true then k else default
                              theorem Std.DHashMap.getKey_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k k' : α} {f : Option (β k)Option (β k)} {h : k' m.alter k f} :
                              (m.alter k f).getKey k' h = if heq : (k == k') = true then k else m.getKey k'
                              @[simp]
                              theorem Std.DHashMap.getKey_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k : α} {f : Option (β k)Option (β k)} {h : k m.alter k f} :
                              (m.alter k f).getKey k h = k
                              theorem Std.DHashMap.getKeyD_alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' fallback : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).getKeyD k' fallback = if (k == k') = true then if (f (m.get? k)).isSome = true then k else fallback else m.getKeyD k' fallback
                              @[simp]
                              theorem Std.DHashMap.getKeyD_alter_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k fallback : α} {f : Option (β k)Option (β k)} :
                              (m.alter k f).getKeyD k fallback = if (f (m.get? k)).isSome = true then k else fallback
                              theorem Std.DHashMap.Const.isEmpty_alter_eq_isEmpty_erase {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : Option βOption β} :
                              (alter m k f).isEmpty = ((m.erase k).isEmpty && (f (get? m k)).isNone)
                              @[simp]
                              theorem Std.DHashMap.Const.isEmpty_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : Option βOption β} :
                              (alter m k f).isEmpty = ((m.isEmpty || m.size == 1 && m.contains k) && (f (get? m k)).isNone)
                              theorem Std.DHashMap.Const.contains_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option βOption β} :
                              (alter m k f).contains k' = if (k == k') = true then (f (get? m k)).isSome else m.contains k'
                              theorem Std.DHashMap.Const.mem_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option βOption β} :
                              k' alter m k f if (k == k') = true then (f (get? m k)).isSome = true else k' m
                              theorem Std.DHashMap.Const.mem_alter_of_beq {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option βOption β} (h : (k == k') = true) :
                              k' alter m k f (f (get? m k)).isSome = true
                              @[simp]
                              theorem Std.DHashMap.Const.contains_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : Option βOption β} :
                              (alter m k f).contains k = (f (get? m k)).isSome
                              @[simp]
                              theorem Std.DHashMap.Const.mem_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : Option βOption β} :
                              k alter m k f (f (get? m k)).isSome = true
                              theorem Std.DHashMap.Const.contains_alter_of_beq_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option βOption β} (h : (k == k') = false) :
                              (alter m k f).contains k' = m.contains k'
                              theorem Std.DHashMap.Const.mem_alter_of_beq_eq_false {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option βOption β} (h : (k == k') = false) :
                              k' alter m k f k' m
                              theorem Std.DHashMap.Const.size_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {k : α} {f : Option βOption β} :
                              (alter m k f).size = if k m (f (get? m k)).isNone = true then m.size - 1 else if ¬k m (f (get? m k)).isSome = true then m.size + 1 else m.size
                              theorem Std.DHashMap.Const.size_alter_eq_add_one {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {k : α} {f : Option βOption β} (h : ¬k m) (h' : (f (get? m k)).isSome = true) :
                              (alter m k f).size = m.size + 1
                              theorem Std.DHashMap.Const.size_alter_eq_sub_one {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {k : α} {f : Option βOption β} (h : k m) (h' : (f (get? m k)).isNone = true) :
                              (alter m k f).size = m.size - 1
                              theorem Std.DHashMap.Const.size_alter_eq_self_of_not_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {k : α} {f : Option βOption β} (h : ¬k m) (h' : (f (get? m k)).isNone = true) :
                              (alter m k f).size = m.size
                              theorem Std.DHashMap.Const.size_alter_eq_self_of_mem {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {k : α} {f : Option βOption β} (h : k m) (h' : (f (get? m k)).isSome = true) :
                              (alter m k f).size = m.size
                              theorem Std.DHashMap.Const.size_alter_le_size {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {k : α} {f : Option βOption β} :
                              (alter m k f).size m.size + 1
                              theorem Std.DHashMap.Const.size_le_size_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [LawfulBEq α] {k : α} {f : Option βOption β} :
                              m.size - 1 (alter m k f).size
                              theorem Std.DHashMap.Const.get?_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option βOption β} :
                              get? (alter m k f) k' = if (k == k') = true then f (get? m k) else get? m k'
                              @[simp]
                              theorem Std.DHashMap.Const.get?_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : Option βOption β} :
                              get? (alter m k f) k = f (get? m k)
                              theorem Std.DHashMap.Const.get_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option βOption β} {h : k' alter m k f} :
                              get (alter m k f) k' h = if heq : (k == k') = true then (f (get? m k)).get else get m k'
                              @[simp]
                              theorem Std.DHashMap.Const.get_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : Option βOption β} {h : k alter m k f} :
                              get (alter m k f) k h = (f (get? m k)).get
                              theorem Std.DHashMap.Const.get!_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} [Inhabited β] {f : Option βOption β} :
                              get! (alter m k f) k' = if (k == k') = true then (f (get? m k)).get! else get! m k'
                              @[simp]
                              theorem Std.DHashMap.Const.get!_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} [Inhabited β] {f : Option βOption β} :
                              get! (alter m k f) k = (f (get? m k)).get!
                              theorem Std.DHashMap.Const.getD_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {fallback : β} {f : Option βOption β} :
                              getD (alter m k f) k' fallback = if (k == k') = true then (f (get? m k)).getD fallback else getD m k' fallback
                              @[simp]
                              theorem Std.DHashMap.Const.getD_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {fallback : β} {f : Option βOption β} :
                              getD (alter m k f) k fallback = (f (get? m k)).getD fallback
                              theorem Std.DHashMap.Const.getKey?_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : Option βOption β} :
                              (alter m k f).getKey? k' = if (k == k') = true then if (f (get? m k)).isSome = true then some k else none else m.getKey? k'
                              theorem Std.DHashMap.Const.getKey?_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : Option βOption β} :
                              (alter m k f).getKey? k = if (f (get? m k)).isSome = true then some k else none
                              theorem Std.DHashMap.Const.getKey!_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} {f : Option βOption β} :
                              (alter m k f).getKey! k' = if (k == k') = true then if (f (get? m k)).isSome = true then k else default else m.getKey! k'
                              theorem Std.DHashMap.Const.getKey!_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} {f : Option βOption β} :
                              (alter m k f).getKey! k = if (f (get? m k)).isSome = true then k else default
                              theorem Std.DHashMap.Const.getKey_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} {f : Option βOption β} {h : k' alter m k f} :
                              (alter m k f).getKey k' h = if heq : (k == k') = true then k else m.getKey k'
                              @[simp]
                              theorem Std.DHashMap.Const.getKey_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} {f : Option βOption β} {h : k alter m k f} :
                              (alter m k f).getKey k h = k
                              theorem Std.DHashMap.Const.getKeyD_alter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' fallback : α} {f : Option βOption β} :
                              (alter m k f).getKeyD k' fallback = if (k == k') = true then if (f (get? m k)).isSome = true then k else fallback else m.getKeyD k' fallback
                              theorem Std.DHashMap.Const.getKeyD_alter_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k fallback : α} {f : Option βOption β} :
                              (alter m k f).getKeyD k fallback = if (f (get? m k)).isSome = true then k else fallback
                              @[simp]
                              theorem Std.DHashMap.isEmpty_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : β kβ k} :
                              @[simp]
                              theorem Std.DHashMap.contains_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : β kβ k} :
                              (m.modify k f).contains k' = m.contains k'
                              @[simp]
                              theorem Std.DHashMap.mem_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : β kβ k} :
                              k' m.modify k f k' m
                              @[simp]
                              theorem Std.DHashMap.size_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : β kβ k} :
                              (m.modify k f).size = m.size
                              theorem Std.DHashMap.get?_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : β kβ k} :
                              (m.modify k f).get? k' = if h : (k == k') = true then cast (Option.map f (m.get? k)) else m.get? k'
                              @[simp]
                              theorem Std.DHashMap.get?_modify_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : β kβ k} :
                              (m.modify k f).get? k = Option.map f (m.get? k)
                              theorem Std.DHashMap.get_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : β kβ k} (h : k' m.modify k f) :
                              (m.modify k f).get k' h = if heq : (k == k') = true then cast (f (m.get k )) else m.get k'
                              @[simp]
                              theorem Std.DHashMap.get_modify_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : β kβ k} {h : k m.modify k f} :
                              (m.modify k f).get k h = f (m.get k )
                              theorem Std.DHashMap.get!_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} [hi : Inhabited (β k')] {f : β kβ k} :
                              (m.modify k f).get! k' = if heq : (k == k') = true then (Option.map (cast ) (Option.map f (m.get? k))).get! else m.get! k'
                              @[simp]
                              theorem Std.DHashMap.get!_modify_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} [Inhabited (β k)] {f : β kβ k} :
                              (m.modify k f).get! k = (Option.map f (m.get? k)).get!
                              theorem Std.DHashMap.getD_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {fallback : β k'} {f : β kβ k} :
                              (m.modify k f).getD k' fallback = if heq : (k == k') = true then (Option.map (cast ) (Option.map f (m.get? k))).getD fallback else m.getD k' fallback
                              @[simp]
                              theorem Std.DHashMap.getD_modify_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {fallback : β k} {f : β kβ k} :
                              (m.modify k f).getD k fallback = (Option.map f (m.get? k)).getD fallback
                              theorem Std.DHashMap.getKey?_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' : α} {f : β kβ k} :
                              (m.modify k f).getKey? k' = if (k == k') = true then if k m then some k else none else m.getKey? k'
                              theorem Std.DHashMap.getKey?_modify_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k : α} {f : β kβ k} :
                              (m.modify k f).getKey? k = if k m then some k else none
                              theorem Std.DHashMap.getKey!_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k k' : α} {f : β kβ k} :
                              (m.modify k f).getKey! k' = if (k == k') = true then if k m then k else default else m.getKey! k'
                              theorem Std.DHashMap.getKey!_modify_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k : α} {f : β kβ k} :
                              (m.modify k f).getKey! k = if k m then k else default
                              theorem Std.DHashMap.getKey_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k k' : α} {f : β kβ k} {h : k' m.modify k f} :
                              (m.modify k f).getKey k' h = if (k == k') = true then k else m.getKey k'
                              @[simp]
                              theorem Std.DHashMap.getKey_modify_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k : α} {f : β kβ k} {h : k m.modify k f} :
                              (m.modify k f).getKey k h = k
                              theorem Std.DHashMap.getKeyD_modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] {k k' fallback : α} {f : β kβ k} :
                              (m.modify k f).getKeyD k' fallback = if (k == k') = true then if k m then k else fallback else m.getKeyD k' fallback
                              theorem Std.DHashMap.getKeyD_modify_self {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [LawfulBEq α] [Inhabited α] {k fallback : α} {f : β kβ k} :
                              (m.modify k f).getKeyD k fallback = if k m then k else fallback
                              @[simp]
                              theorem Std.DHashMap.Const.isEmpty_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : ββ} :
                              @[simp]
                              theorem Std.DHashMap.Const.contains_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : ββ} :
                              (modify m k f).contains k' = m.contains k'
                              @[simp]
                              theorem Std.DHashMap.Const.mem_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : ββ} :
                              k' modify m k f k' m
                              @[simp]
                              theorem Std.DHashMap.Const.size_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : ββ} :
                              (modify m k f).size = m.size
                              theorem Std.DHashMap.Const.get?_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : ββ} :
                              get? (modify m k f) k' = if (k == k') = true then Option.map f (get? m k) else get? m k'
                              @[simp]
                              theorem Std.DHashMap.Const.get?_modify_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : ββ} :
                              get? (modify m k f) k = Option.map f (get? m k)
                              theorem Std.DHashMap.Const.get_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : ββ} {h : k' modify m k f} :
                              get (modify m k f) k' h = if heq : (k == k') = true then f (get m k ) else get m k'
                              @[simp]
                              theorem Std.DHashMap.Const.get_modify_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : ββ} {h : k modify m k f} :
                              get (modify m k f) k h = f (get m k )
                              theorem Std.DHashMap.Const.get!_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} [Inhabited β] {f : ββ} :
                              get! (modify m k f) k' = if (k == k') = true then (Option.map f (get? m k)).get! else get! m k'
                              @[simp]
                              theorem Std.DHashMap.Const.get!_modify_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} [Inhabited β] {f : ββ} :
                              get! (modify m k f) k = (Option.map f (get? m k)).get!
                              theorem Std.DHashMap.Const.getD_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {fallback : β} {f : ββ} :
                              getD (modify m k f) k' fallback = if (k == k') = true then (Option.map f (get? m k)).getD fallback else getD m k' fallback
                              @[simp]
                              theorem Std.DHashMap.Const.getD_modify_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {fallback : β} {f : ββ} :
                              getD (modify m k f) k fallback = (Option.map f (get? m k)).getD fallback
                              theorem Std.DHashMap.Const.getKey?_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' : α} {f : ββ} :
                              (modify m k f).getKey? k' = if (k == k') = true then if k m then some k else none else m.getKey? k'
                              theorem Std.DHashMap.Const.getKey?_modify_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {f : ββ} :
                              (modify m k f).getKey? k = if k m then some k else none
                              theorem Std.DHashMap.Const.getKey!_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} {f : ββ} :
                              (modify m k f).getKey! k' = if (k == k') = true then if k m then k else default else m.getKey! k'
                              theorem Std.DHashMap.Const.getKey!_modify_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} {f : ββ} :
                              (modify m k f).getKey! k = if k m then k else default
                              theorem Std.DHashMap.Const.getKey_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k k' : α} {f : ββ} {h : k' modify m k f} :
                              (modify m k f).getKey k' h = if (k == k') = true then k else m.getKey k'
                              @[simp]
                              theorem Std.DHashMap.Const.getKey_modify_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} {f : ββ} {h : k modify m k f} :
                              (modify m k f).getKey k h = k
                              theorem Std.DHashMap.Const.getKeyD_modify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k k' fallback : α} {f : ββ} :
                              (modify m k f).getKeyD k' fallback = if (k == k') = true then if k m then k else fallback else m.getKeyD k' fallback
                              theorem Std.DHashMap.Const.getKeyD_modify_self {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k fallback : α} {f : ββ} :
                              (modify m k f).getKeyD k fallback = if k m then k else fallback
                              theorem Std.DHashMap.Equiv.refl {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} (m : DHashMap α β) :
                              m.Equiv m
                              theorem Std.DHashMap.Equiv.rfl {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} :
                              m.Equiv m
                              theorem Std.DHashMap.Equiv.symm {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} :
                              m₁.Equiv m₂m₂.Equiv m₁
                              theorem Std.DHashMap.Equiv.trans {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ m₃ : DHashMap α β} :
                              m₁.Equiv m₂m₂.Equiv m₃m₁.Equiv m₃
                              theorem Std.DHashMap.Equiv.comm {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} :
                              m₁.Equiv m₂ m₂.Equiv m₁
                              theorem Std.DHashMap.Equiv.congr_left {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ m₃ : DHashMap α β} (h : m₁.Equiv m₂) :
                              m₁.Equiv m₃ m₂.Equiv m₃
                              theorem Std.DHashMap.Equiv.congr_right {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ m₃ : DHashMap α β} (h : m₁.Equiv m₂) :
                              m₃.Equiv m₁ m₃.Equiv m₂
                              theorem Std.DHashMap.Equiv.isEmpty_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] (h : m₁.Equiv m₂) :
                              m₁.isEmpty = m₂.isEmpty
                              theorem Std.DHashMap.Equiv.size_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] (h : m₁.Equiv m₂) :
                              m₁.size = m₂.size
                              theorem Std.DHashMap.Equiv.contains_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} (h : m₁.Equiv m₂) :
                              m₁.contains k = m₂.contains k
                              theorem Std.DHashMap.Equiv.mem_iff {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} (h : m₁.Equiv m₂) :
                              k m₁ k m₂
                              theorem Std.DHashMap.Equiv.toList_perm {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} (h : m₁.Equiv m₂) :
                              m₁.toList.Perm m₂.toList
                              theorem Std.DHashMap.Equiv.of_toList_perm {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} (h : m₁.toList.Perm m₂.toList) :
                              m₁.Equiv m₂
                              theorem Std.DHashMap.Equiv.keys_perm {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} (h : m₁.Equiv m₂) :
                              m₁.keys.Perm m₂.keys
                              theorem Std.DHashMap.Equiv.get?_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [LawfulBEq α] {k : α} (h : m₁.Equiv m₂) :
                              m₁.get? k = m₂.get? k
                              theorem Std.DHashMap.Equiv.get_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [LawfulBEq α] {k : α} (hk : k m₁) (h : m₁.Equiv m₂) :
                              m₁.get k hk = m₂.get k
                              theorem Std.DHashMap.Equiv.get!_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [LawfulBEq α] {k : α} [Inhabited (β k)] (h : m₁.Equiv m₂) :
                              m₁.get! k = m₂.get! k
                              theorem Std.DHashMap.Equiv.getD_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [LawfulBEq α] {k : α} {fallback : β k} (h : m₁.Equiv m₂) :
                              m₁.getD k fallback = m₂.getD k fallback
                              theorem Std.DHashMap.Equiv.getKey?_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} (h : m₁.Equiv m₂) :
                              m₁.getKey? k = m₂.getKey? k
                              theorem Std.DHashMap.Equiv.getKey_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k : α} (hk : k m₁) (h : m₁.Equiv m₂) :
                              m₁.getKey k hk = m₂.getKey k
                              theorem Std.DHashMap.Equiv.getKey!_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] [Inhabited α] {k : α} (h : m₁.Equiv m₂) :
                              m₁.getKey! k = m₂.getKey! k
                              theorem Std.DHashMap.Equiv.getKeyD_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] {k fallback : α} (h : m₁.Equiv m₂) :
                              m₁.getKeyD k fallback = m₂.getKeyD k fallback
                              theorem Std.DHashMap.Equiv.insert {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] (k : α) (v : β k) (h : m₁.Equiv m₂) :
                              (m₁.insert k v).Equiv (m₂.insert k v)
                              theorem Std.DHashMap.Equiv.erase {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] (k : α) (h : m₁.Equiv m₂) :
                              (m₁.erase k).Equiv (m₂.erase k)
                              theorem Std.DHashMap.Equiv.insertIfNew {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] (k : α) (v : β k) (h : m₁.Equiv m₂) :
                              (m₁.insertIfNew k v).Equiv (m₂.insertIfNew k v)
                              theorem Std.DHashMap.Equiv.insertMany_list {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] (l : List ((a : α) × β a)) (h : m₁.Equiv m₂) :
                              (m₁.insertMany l).Equiv (m₂.insertMany l)
                              theorem Std.DHashMap.Equiv.alter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [LawfulBEq α] (k : α) (f : Option (β k)Option (β k)) (h : m₁.Equiv m₂) :
                              (m₁.alter k f).Equiv (m₂.alter k f)
                              theorem Std.DHashMap.Equiv.modify {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [LawfulBEq α] (k : α) (f : β kβ k) (h : m₁.Equiv m₂) :
                              (m₁.modify k f).Equiv (m₂.modify k f)
                              theorem Std.DHashMap.Equiv.filter {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} (f : (a : α) → β aBool) (h : m₁.Equiv m₂) :
                              theorem Std.DHashMap.Equiv.map {α : Type u} {β : αType v} {γ : αType w} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} (f : (a : α) → β aγ a) (h : m₁.Equiv m₂) :
                              (DHashMap.map f m₁).Equiv (DHashMap.map f m₂)
                              theorem Std.DHashMap.Equiv.filterMap {α : Type u} {β : αType v} {γ : αType w} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} (f : (a : α) → β aOption (γ a)) (h : m₁.Equiv m₂) :
                              theorem Std.DHashMap.Equiv.of_forall_get?_eq {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [LawfulBEq α] (h : ∀ (k : α), m₁.get? k = m₂.get? k) :
                              m₁.Equiv m₂
                              theorem Std.DHashMap.Equiv.constToList_perm {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} (h : m₁.Equiv m₂) :
                              theorem Std.DHashMap.Equiv.of_constToList_perm {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} (h : (Const.toList m₁).Perm (Const.toList m₂)) :
                              m₁.Equiv m₂
                              theorem Std.DHashMap.Equiv.of_keys_unit_perm {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α fun (x : α) => Unit} (h : m₁.keys.Perm m₂.keys) :
                              m₁.Equiv m₂
                              theorem Std.DHashMap.Equiv.constGet?_eq {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} (h : m₁.Equiv m₂) :
                              Const.get? m₁ k = Const.get? m₂ k
                              theorem Std.DHashMap.Equiv.constGet_eq {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} (hk : k m₁) (h : m₁.Equiv m₂) :
                              Const.get m₁ k hk = Const.get m₂ k
                              theorem Std.DHashMap.Equiv.constGet!_eq {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] [Inhabited β] {k : α} (h : m₁.Equiv m₂) :
                              Const.get! m₁ k = Const.get! m₂ k
                              theorem Std.DHashMap.Equiv.constGetD_eq {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] {k : α} {fallback : β} (h : m₁.Equiv m₂) :
                              Const.getD m₁ k fallback = Const.getD m₂ k fallback
                              theorem Std.DHashMap.Equiv.constInsertMany_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] (l : List (α × β)) (h : m₁.Equiv m₂) :
                              theorem Std.DHashMap.Equiv.constInsertManyIfNewUnit_list {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {m₁ m₂ : DHashMap α fun (x : α) => Unit} (l : List α) (h : m₁.Equiv m₂) :
                              theorem Std.DHashMap.Equiv.constAlter {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] (k : α) (f : Option βOption β) (h : m₁.Equiv m₂) :
                              (Const.alter m₁ k f).Equiv (Const.alter m₂ k f)
                              theorem Std.DHashMap.Equiv.constModify {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] (k : α) (f : ββ) (h : m₁.Equiv m₂) :
                              (Const.modify m₁ k f).Equiv (Const.modify m₂ k f)
                              theorem Std.DHashMap.Equiv.of_forall_getKey?_eq_of_forall_constGet?_eq {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] (hk : ∀ (k : α), m₁.getKey? k = m₂.getKey? k) (hv : ∀ (k : α), Const.get? m₁ k = Const.get? m₂ k) :
                              m₁.Equiv m₂
                              theorem Std.DHashMap.Equiv.of_forall_getKey?_unit_eq {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {m₁ m₂ : DHashMap α fun (x : α) => Unit} (h : ∀ (k : α), m₁.getKey? k = m₂.getKey? k) :
                              m₁.Equiv m₂
                              theorem Std.DHashMap.Equiv.of_forall_contains_unit_eq {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {m₁ m₂ : DHashMap α fun (x : α) => Unit} (h : ∀ (k : α), m₁.contains k = m₂.contains k) :
                              m₁.Equiv m₂
                              theorem Std.DHashMap.Equiv.of_forall_mem_unit_iff {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [LawfulBEq α] {m₁ m₂ : DHashMap α fun (x : α) => Unit} (h : ∀ (k : α), k m₁ k m₂) :
                              m₁.Equiv m₂
                              @[simp]
                              theorem Std.DHashMap.equiv_emptyWithCapacity_iff_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {c : Nat} :
                              @[simp]
                              theorem Std.DHashMap.equiv_empty_iff_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              @[reducible, inline, deprecated Std.DHashMap.equiv_empty_iff_isEmpty (since := "2025-03-11")]
                              abbrev Std.DHashMap.equiv_emptyc_iff_isEmpty {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                              Equations
                              Instances For
                                theorem Std.DHashMap.empty_equivWithCapacity_iff_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] {c : Nat} :
                                @[simp]
                                theorem Std.DHashMap.empty_equiv_iff_isEmpty {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                                @[reducible, inline, deprecated Std.DHashMap.empty_equiv_iff_isEmpty (since := "2025-03-11")]
                                abbrev Std.DHashMap.emptyc_equiv_iff_isEmpty {α : Type u_1} {β : αType u_2} {x✝ : BEq α} {x✝¹ : Hashable α} {m : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                                Equations
                                Instances For
                                  theorem Std.DHashMap.equiv_iff_toList_perm {α : Type u} {β : αType v} {x✝ : BEq α} {x✝¹ : Hashable α} {m₁ m₂ : DHashMap α β} [EquivBEq α] [LawfulHashable α] :
                                  m₁.Equiv m₂ m₁.toList.Perm m₂.toList
                                  theorem Std.DHashMap.Const.equiv_iff_toList_perm {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} {β : Type v} {m₁ m₂ : DHashMap α fun (x : α) => β} [EquivBEq α] [LawfulHashable α] :
                                  m₁.Equiv m₂ (toList m₁).Perm (toList m₂)
                                  theorem Std.DHashMap.Const.equiv_iff_keys_unit_perm {α : Type u} {x✝ : BEq α} {x✝¹ : Hashable α} [EquivBEq α] [LawfulHashable α] {m₁ m₂ : DHashMap α fun (x : α) => Unit} :
                                  m₁.Equiv m₂ m₁.keys.Perm m₂.keys