Dependent hash map lemmas #
This file contains lemmas about Std.Data.DHashMap
. Most of the lemmas require
EquivBEq α
and LawfulHashable α
for the key type α
. The easiest way to obtain these instances
is to provide an instance of LawfulBEq α
.
@[reducible, inline, deprecated Std.DHashMap.isEmpty_empty (since := "2025-03-12")]
abbrev
Std.DHashMap.isEmpty_emptyc
{α : Type u_1}
{β : α → Type u_2}
{x✝ : BEq α}
{x✝¹ : Hashable α}
:
Instances For
@[reducible, inline, deprecated Std.DHashMap.contains_empty (since := "2025-03-12")]
abbrev
Std.DHashMap.contains_emptyc
{α : Type u_1}
{β : α → Type u_2}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{a : α}
:
Instances For
@[reducible, inline, deprecated Std.DHashMap.not_mem_empty (since := "2025-03-12")]
abbrev
Std.DHashMap.not_mem_emptyc
{α : Type u_1}
{β : α → Type u_2}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{a : α}
:
Instances For
@[reducible, inline, deprecated Std.DHashMap.size_empty (since := "2025-03-12")]
Equations
Instances For
@[reducible, inline, deprecated Std.DHashMap.erase_empty (since := "2025-03-12")]
abbrev
Std.DHashMap.erase_emptyc
{α : Type u_1}
{β : α → Type u_2}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{k : α}
:
Equations
Instances For
@[reducible, inline, deprecated Std.DHashMap.Const.get?_empty (since := "2025-03-12")]
abbrev
Std.DHashMap.Const.get?_emptyc
{α : Type u_1}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type u_2}
{a : α}
:
Instances For
@[reducible, inline, deprecated Std.DHashMap.Const.getD_empty (since := "2025-03-12")]
abbrev
Std.DHashMap.Const.getD_emptyc
{α : Type u_1}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type u_2}
{a : α}
{fallback : β}
:
Instances For
@[reducible, inline, deprecated Std.DHashMap.getKey?_empty (since := "2025-03-12")]
abbrev
Std.DHashMap.getKey?_emptyc
{α : Type u_1}
{β : α → Type u_2}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{a : α}
:
Instances For
theorem
Std.DHashMap.getKey?_beq
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
:
@[reducible, inline, deprecated Std.DHashMap.getKeyD_empty (since := "2025-03-12")]
abbrev
Std.DHashMap.getKeyD_emptyc
{α : Type u_1}
{β : α → Type u_2}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{a fallback : α}
:
Instances For
@[simp]
theorem
Std.DHashMap.isEmpty_insertIfNew
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{v : β k}
:
@[simp]
theorem
Std.DHashMap.contains_insertIfNew
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k a : α}
{v : β k}
:
theorem
Std.DHashMap.contains_insertIfNew_self
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{v : β k}
:
theorem
Std.DHashMap.mem_insertIfNew_self
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{v : β k}
:
theorem
Std.DHashMap.mem_of_mem_insertIfNew
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k a : α}
{v : β k}
:
theorem
Std.DHashMap.contains_of_contains_insertIfNew'
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k a : α}
{v : β k}
:
This is a restatement of contains_of_contains_insertIfNew
that is written to exactly match the proof
obligation in the statement of get_insertIfNew
.
theorem
Std.DHashMap.mem_of_mem_insertIfNew'
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k a : α}
{v : β k}
:
This is a restatement of mem_of_mem_insertIfNew
that is written to exactly match the proof obligation
in the statement of get_insertIfNew
.
theorem
Std.DHashMap.size_le_size_insertIfNew
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{v : β k}
:
theorem
Std.DHashMap.size_insertIfNew_le
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{v : β k}
:
theorem
Std.DHashMap.Const.get_insertIfNew
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k a : α}
{v : β}
{h₁ : a ∈ m.insertIfNew k v}
:
theorem
Std.DHashMap.getKey_insertIfNew
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{k a : α}
{v : β k}
{h₁ : a ∈ m.insertIfNew k v}
:
theorem
Std.DHashMap.distinct_keys
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
:
List.Pairwise (fun (a b : α) => (a == b) = false) m.keys
@[simp, deprecated Std.DHashMap.Const.map_fst_toList_eq_keys (since := "2025-02-28")]
theorem
Std.DHashMap.Const.find?_toList_eq_some_iff_getKey?_eq_some_and_get?_eq_some
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k k' : α}
{v : β}
:
@[deprecated Std.DHashMap.Const.forMUncurried_eq_forM_toList (since := "2025-03-02")]
theorem
Std.DHashMap.Const.forM_eq_forM_toList
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m' : Type w → Type w}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[Monad m']
[LawfulMonad m']
{f : α → β → m' PUnit}
:
Deprecated, use forMUncurried_eq_forM_toList
together with forM_eq_forMUncurried
instead.
@[deprecated Std.DHashMap.Const.forInUncurried_eq_forIn_toList (since := "2025-03-02")]
theorem
Std.DHashMap.Const.forIn_eq_forIn_toList
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{δ : Type w}
{m' : Type w → Type w}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[Monad m']
[LawfulMonad m']
{f : α × β → δ → m' (ForInStep δ)}
{init : δ}
:
Deprecated, use forInUncurried_eq_forIn_toList
together with forIn_eq_forInUncurried
instead.
@[deprecated Std.DHashMap.fold_eq_foldl_keys (since := "2025-02-28")]
@[deprecated Std.DHashMap.forM_eq_forM_keys (since := "2025-02-28")]
@[deprecated Std.DHashMap.forIn_eq_forIn_keys (since := "2025-02-28")]
theorem
Std.DHashMap.get?_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.get_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
{h : k' ∈ m.insertMany l}
:
theorem
Std.DHashMap.get!_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
[Inhabited (β k')]
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.getD_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
{fallback : β k'}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.getKey?_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.getKey_insertMany_list_of_contains_eq_false
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k : α}
(contains_eq_false : (List.map Sigma.fst l).contains k = false)
{h : k ∈ m.insertMany l}
:
theorem
Std.DHashMap.getKey_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
{h : k' ∈ m.insertMany l}
:
theorem
Std.DHashMap.getKey!_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.getKeyD_insertMany_list_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.size_insertMany_list
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
:
theorem
Std.DHashMap.size_le_size_insertMany_list
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
:
theorem
Std.DHashMap.Const.getKey?_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Const.getKey_insertMany_list_of_contains_eq_false
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k : α}
(contains_eq_false : (List.map Prod.fst l).contains k = false)
{h : k ∈ insertMany m l}
:
theorem
Std.DHashMap.Const.getKey_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
{h : k' ∈ insertMany m l}
:
theorem
Std.DHashMap.Const.getKey!_insertMany_list_of_contains_eq_false
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List (α × β)}
{k : α}
(contains_eq_false : (List.map Prod.fst l).contains k = false)
:
theorem
Std.DHashMap.Const.getKey!_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Const.getKeyD_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Const.size_le_size_insertMany_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
:
theorem
Std.DHashMap.Const.get?_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.DHashMap.Const.get_insertMany_list_of_contains_eq_false
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k : α}
(contains_eq_false : (List.map Prod.fst l).contains k = false)
{h : k ∈ insertMany m l}
:
theorem
Std.DHashMap.Const.get_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
{h : k' ∈ insertMany m l}
:
theorem
Std.DHashMap.Const.get!_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited β]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.DHashMap.Const.getD_insertMany_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
{v fallback : β}
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : (k, v) ∈ l)
:
theorem
Std.DHashMap.Const.getKey?_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.DHashMap.Const.getKey?_insertManyIfNewUnit_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
(h' : k ∈ m)
:
theorem
Std.DHashMap.Const.getKey_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
{h : k' ∈ insertManyIfNewUnit m l}
:
theorem
Std.DHashMap.Const.getKey_insertManyIfNewUnit_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
(mem : k ∈ m)
{h : k ∈ insertManyIfNewUnit m l}
:
theorem
Std.DHashMap.Const.getKey!_insertManyIfNewUnit_list_of_not_mem_of_contains_eq_false
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List α}
{k : α}
(not_mem : ¬k ∈ m)
(contains_eq_false : l.contains k = false)
:
theorem
Std.DHashMap.Const.getKey!_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.DHashMap.Const.getKeyD_insertManyIfNewUnit_list_of_not_mem_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' fallback : α}
(k_beq : (k == k') = true)
(not_mem : ¬k ∈ m)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.DHashMap.Const.getKeyD_insertManyIfNewUnit_list_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k fallback : α}
(mem : k ∈ m)
:
theorem
Std.DHashMap.Const.size_insertManyIfNewUnit_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
:
theorem
Std.DHashMap.Const.size_le_size_insertManyIfNewUnit_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
theorem
Std.DHashMap.Const.get_insertManyIfNewUnit_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α fun (x : α) => Unit}
{l : List α}
{k : α}
{h : k ∈ insertManyIfNewUnit m l}
:
theorem
Std.DHashMap.get_ofList_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
{h : k' ∈ ofList l}
:
theorem
Std.DHashMap.get!_ofList_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
[Inhabited (β k')]
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.getD_ofList_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[LawfulBEq α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
{v : β k}
{fallback : β k'}
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : ⟨k, v⟩ ∈ l)
:
theorem
Std.DHashMap.getKey?_ofList_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.getKey_ofList_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
{h : k' ∈ ofList l}
:
theorem
Std.DHashMap.getKey!_ofList_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List ((a : α) × β a)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.getKeyD_ofList_of_mem
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List ((a : α) × β a)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Sigma.fst l)
:
theorem
Std.DHashMap.Const.getKey?_ofList_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Const.getKey_ofList_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
{h : k' ∈ ofList l}
:
theorem
Std.DHashMap.Const.getKey!_ofList_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{l : List (α × β)}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
theorem
Std.DHashMap.Const.getKeyD_ofList_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
[EquivBEq α]
[LawfulHashable α]
{l : List (α × β)}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l)
(mem : k ∈ List.map Prod.fst l)
:
@[simp]
@[simp]
theorem
Std.DHashMap.Const.unitOfList_singleton
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{k : α}
:
theorem
Std.DHashMap.Const.unitOfList_cons
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{hd : α}
{tl : List α}
:
@[simp]
theorem
Std.DHashMap.Const.contains_unitOfList
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
:
@[simp]
theorem
Std.DHashMap.Const.mem_unitOfList
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
:
theorem
Std.DHashMap.Const.getKey?_unitOfList_of_contains_eq_false
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k : α}
(contains_eq_false : l.contains k = false)
:
theorem
Std.DHashMap.Const.getKey?_unitOfList_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.DHashMap.Const.getKey_unitOfList_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
{h : k' ∈ unitOfList l}
:
theorem
Std.DHashMap.Const.getKeyD_unitOfList_of_contains_eq_false
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k fallback : α}
(contains_eq_false : l.contains k = false)
:
theorem
Std.DHashMap.Const.getKeyD_unitOfList_of_mem
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
{k k' fallback : α}
(k_beq : (k == k') = true)
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
(mem : k ∈ l)
:
theorem
Std.DHashMap.Const.size_unitOfList
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
(distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l)
:
theorem
Std.DHashMap.Const.size_unitOfList_le
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
@[simp]
theorem
Std.DHashMap.Const.isEmpty_unitOfList
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{l : List α}
:
@[simp]
theorem
Std.DHashMap.Const.get_unitOfList
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{l : List α}
{k : α}
{h : k ∈ unitOfList l}
:
@[simp]
@[simp]
theorem
Std.DHashMap.Const.getD_alter
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k k' : α}
{fallback : β}
{f : Option β → Option β}
:
theorem
Std.DHashMap.Const.getKey?_alter
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k k' : α}
{f : Option β → Option β}
:
theorem
Std.DHashMap.Const.getKeyD_alter
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k k' fallback : α}
{f : Option β → Option β}
:
@[simp]
theorem
Std.DHashMap.Const.get?_modify_self
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{f : β → β}
:
theorem
Std.DHashMap.Const.getD_modify
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k k' : α}
{fallback : β}
{f : β → β}
:
@[simp]
theorem
Std.DHashMap.Const.getD_modify_self
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{fallback : β}
{f : β → β}
:
theorem
Std.DHashMap.Const.getKey!_modify
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited α]
{k k' : α}
{f : β → β}
:
theorem
Std.DHashMap.Const.getKeyD_modify
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k k' fallback : α}
{f : β → β}
:
theorem
Std.DHashMap.Equiv.insertIfNew
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m₁ m₂ : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
(k : α)
(v : β k)
(h : m₁.Equiv m₂)
:
(m₁.insertIfNew k v).Equiv (m₂.insertIfNew k v)
theorem
Std.DHashMap.Equiv.insertMany_list
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m₁ m₂ : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
(l : List ((a : α) × β a))
(h : m₁.Equiv m₂)
:
(m₁.insertMany l).Equiv (m₂.insertMany l)
theorem
Std.DHashMap.Equiv.filter
{α : Type u}
{β : α → Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m₁ m₂ : DHashMap α β}
(f : (a : α) → β a → Bool)
(h : m₁.Equiv m₂)
:
(DHashMap.filter f m₁).Equiv (DHashMap.filter f m₂)
theorem
Std.DHashMap.Equiv.map
{α : Type u}
{β : α → Type v}
{γ : α → Type w}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m₁ m₂ : DHashMap α β}
(f : (a : α) → β a → γ a)
(h : m₁.Equiv m₂)
:
(DHashMap.map f m₁).Equiv (DHashMap.map f m₂)
theorem
Std.DHashMap.Equiv.filterMap
{α : Type u}
{β : α → Type v}
{γ : α → Type w}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m₁ m₂ : DHashMap α β}
(f : (a : α) → β a → Option (γ a))
(h : m₁.Equiv m₂)
:
(DHashMap.filterMap f m₁).Equiv (DHashMap.filterMap f m₂)
theorem
Std.DHashMap.Equiv.constToList_perm
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
(h : m₁.Equiv m₂)
:
(Const.toList m₁).Perm (Const.toList m₂)
theorem
Std.DHashMap.Equiv.of_constToList_perm
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
(h : (Const.toList m₁).Perm (Const.toList m₂))
:
m₁.Equiv m₂
theorem
Std.DHashMap.Equiv.constGet?_eq
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
(h : m₁.Equiv m₂)
:
theorem
Std.DHashMap.Equiv.constGet!_eq
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
[Inhabited β]
{k : α}
(h : m₁.Equiv m₂)
:
theorem
Std.DHashMap.Equiv.constGetD_eq
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
{k : α}
{fallback : β}
(h : m₁.Equiv m₂)
:
theorem
Std.DHashMap.Equiv.constInsertMany_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(l : List (α × β))
(h : m₁.Equiv m₂)
:
(Const.insertMany m₁ l).Equiv (Const.insertMany m₂ l)
theorem
Std.DHashMap.Equiv.constInsertManyIfNewUnit_list
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
[EquivBEq α]
[LawfulHashable α]
{m₁ m₂ : DHashMap α fun (x : α) => Unit}
(l : List α)
(h : m₁.Equiv m₂)
:
(Const.insertManyIfNewUnit m₁ l).Equiv (Const.insertManyIfNewUnit m₂ l)
theorem
Std.DHashMap.Equiv.constAlter
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(k : α)
(f : Option β → Option β)
(h : m₁.Equiv m₂)
:
(Const.alter m₁ k f).Equiv (Const.alter m₂ k f)
theorem
Std.DHashMap.Equiv.constModify
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(k : α)
(f : β → β)
(h : m₁.Equiv m₂)
:
(Const.modify m₁ k f).Equiv (Const.modify m₂ k f)
theorem
Std.DHashMap.Equiv.of_forall_getKey?_eq_of_forall_constGet?_eq
{α : Type u}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m₁ m₂ : DHashMap α fun (x : α) => β}
[EquivBEq α]
[LawfulHashable α]
(hk : ∀ (k : α), m₁.getKey? k = m₂.getKey? k)
(hv : ∀ (k : α), Const.get? m₁ k = Const.get? m₂ k)
:
m₁.Equiv m₂
@[reducible, inline, deprecated Std.DHashMap.equiv_empty_iff_isEmpty (since := "2025-03-11")]
abbrev
Std.DHashMap.equiv_emptyc_iff_isEmpty
{α : Type u_1}
{β : α → Type u_2}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
:
Instances For
@[reducible, inline, deprecated Std.DHashMap.empty_equiv_iff_isEmpty (since := "2025-03-11")]
abbrev
Std.DHashMap.emptyc_equiv_iff_isEmpty
{α : Type u_1}
{β : α → Type u_2}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{m : DHashMap α β}
[EquivBEq α]
[LawfulHashable α]
: