Documentation

Aesop.Util.UnorderedArraySet

structure Aesop.UnorderedArraySet (α : Type u_1) [BEq α] :
Type u_1
instance Aesop.instInhabitedUnorderedArraySet {a✝ : Type u_1} {a✝¹ : BEq a✝} :
Equations

O(n)

Equations

Precondition: xs contains no duplicates.

Equations

Precondition: xs is sorted.

Equations
def Aesop.UnorderedArraySet.ofArray {α : Type u_1} [BEq α] [ord : Ord α] (xs : Array α) :

O(n*log(n))

Equations
def Aesop.UnorderedArraySet.filterM {α : Type} [BEq α] {m : TypeType u_1} [Monad m] (p : αm Bool) (s : UnorderedArraySet α) :

O(n)

Equations
def Aesop.UnorderedArraySet.foldM {α : Type u_1} [BEq α] {m : Type u_2 → Type u_3} {σ : Type u_2} [Monad m] (f : σαm σ) (init : σ) (s : UnorderedArraySet α) :
m σ

O(n)

Equations
instance Aesop.UnorderedArraySet.instForIn {α : Type u_1} [BEq α] {m : Type u_2 → Type u_3} :
Equations
def Aesop.UnorderedArraySet.fold {α : Type u_1} [BEq α] {σ : Type u_2} (f : σασ) (init : σ) (s : UnorderedArraySet α) :
σ

O(n)

Equations
Equations
def Aesop.UnorderedArraySet.anyM {α : Type u_1} [BEq α] {m : TypeType u_2} [Monad m] (p : αm Bool) (s : UnorderedArraySet α) (start : Nat := 0) (stop : Nat := s.size) :

O(n)

Equations
def Aesop.UnorderedArraySet.any {α : Type u_1} [BEq α] (p : αBool) (s : UnorderedArraySet α) (start : Nat := 0) (stop : Nat := s.size) :

O(n)

Equations
def Aesop.UnorderedArraySet.allM {α : Type u_1} [BEq α] {m : TypeType u_2} [Monad m] (p : αm Bool) (s : UnorderedArraySet α) (start : Nat := 0) (stop : Nat := s.size) :

O(n)

Equations
def Aesop.UnorderedArraySet.all {α : Type u_1} [BEq α] (p : αBool) (s : UnorderedArraySet α) (start : Nat := 0) (stop : Nat := s.size) :

O(n)

Equations