theorem
quadruple_bound_right
{α : Type u_1}
[DecidableEq α]
{B : Finset α}
{x : α}
[AddCommGroup α]
{a b : α}
(H : Finset (α × α))
(X : Finset α)
(h : x = a - b)
:
↑((Finset.filter (fun (c : α) => (a, c) ∈ H ∧ (b, c) ∈ H) X).sigma fun (c : α) =>
Finset.filter
(fun (x : (α × α) × α × α) =>
match x with
| ((a₁, a₂), a₃, a₄) => a₁ - a₂ = a - c ∧ a₃ - a₄ = b - c)
((B ×ˢ B) ×ˢ B ×ˢ B)).card ≤ ↑(Finset.filter
(fun (x : (α × α) × α × α) =>
match x with
| ((a₁, a₂), a₃, a₄) => a₁ - a₂ - (a₃ - a₄) = a - b)
((B ×ˢ B) ×ˢ B ×ˢ B)).card
theorem
thing_one_right
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{R : Type u_2}
[CommSemiring R]
[StarRing R]
{A B : Finset G}
{x : G}
:
theorem
thing_two
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{R : Type u_2}
[CommSemiring R]
[StarRing R]
{A B : Finset G}
:
theorem
thing_three
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{R : Type u_2}
[CommSemiring R]
[StarRing R]
{A B : Finset G}
:
noncomputable def
H_choice
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
(A B : Finset G)
(c : ℝ)
:
Equations
Instances For
theorem
claim_seven
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{A B : Finset G}
(c : ℝ)
(hc : 0 ≤ c)
(hA : 0 < ↑A.card)
(hB : 0 < ↑B.card)
:
theorem
claim_eight
{G : Type u_1}
[AddCommGroup G]
[Fintype G]
[DecidableEq G]
{A B : Finset G}
(c : ℝ)
(hc : 0 ≤ c)
(hA : 0 < ↑A.card)
(hB : 0 < ↑B.card)
: