Documentation

LeanAPAP.Prereqs.Convolution.Order

theorem conv_nonneg {G : Type u_1} {R : Type u_2} [Fintype G] [DecidableEq G] [AddCommGroup G] [OrderedCommSemiring R] {f g : GR} (hf : 0 f) (hg : 0 g) :
0 f g
theorem dconv_nonneg {G : Type u_1} {R : Type u_2} [Fintype G] [DecidableEq G] [AddCommGroup G] [OrderedCommSemiring R] {f g : GR} [StarRing R] [StarOrderedRing R] (hf : 0 f) (hg : 0 g) :
0 f g
@[simp]
theorem support_conv {G : Type u_1} {R : Type u_2} [Fintype G] [DecidableEq G] [AddCommGroup G] [StrictOrderedCommSemiring R] {f g : GR} (hf : 0 f) (hg : 0 g) :
theorem conv_pos {G : Type u_1} {R : Type u_2} [Fintype G] [DecidableEq G] [AddCommGroup G] [StrictOrderedCommSemiring R] {f g : GR} (hf : 0 < f) (hg : 0 < g) :
0 < f g
@[simp]
theorem support_dconv {G : Type u_1} {R : Type u_2} [Fintype G] [DecidableEq G] [AddCommGroup G] [StrictOrderedCommSemiring R] {f g : GR} [StarRing R] [StarOrderedRing R] (hf : 0 f) (hg : 0 g) :
theorem dconv_pos {G : Type u_1} {R : Type u_2} [Fintype G] [DecidableEq G] [AddCommGroup G] [StrictOrderedCommSemiring R] {f g : GR} [StarRing R] [StarOrderedRing R] (hf : 0 < f) (hg : 0 < g) :
0 < f g
@[simp]
theorem iterConv_nonneg {G : Type u_1} {R : Type u_2} [Fintype G] [DecidableEq G] [AddCommGroup G] [OrderedCommSemiring R] {f : GR} (hf : 0 f) {n : } :
0 f ∗^ n
@[simp]
theorem iterConv_pos {G : Type u_1} {R : Type u_2} [Fintype G] [DecidableEq G] [AddCommGroup G] [StrictOrderedCommSemiring R] [StarRing R] [StarOrderedRing R] {f : GR} (hf : 0 < f) {n : } :
0 < f ∗^ n

The positivity extension which identifies expressions of the form f ∗ g, such that positivity successfully recognises both f and g.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The positivity extension which identifies expressions of the form f ○ g, such that positivity successfully recognises both f and g.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The positivity extension which identifies expressions of the form f ○ g, such that positivity successfully recognises both f and g.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For